• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Apprentissage profond pour l'analyse de l'EEG continu / Deep learning for continuous EEG analysis

Sors, Arnaud 27 February 2018 (has links)
Ces travaux de recherche visent à développer des méthodes d’apprentissage automatique pour l’analyse de l’électroencéphalogramme (EEG) continu. L’EEG continu est une modalité avantageuse pour l’évaluation fonctionnelle des états cérébraux en réanimation ou pour d’autres applications. Cependant son utilisation aujourd’hui demeure plus restreinte qu’elle ne pourrait l’être, car dans la plupart des cas l’interprétation est effectuée visuellement par des spécialistes.Les sous-parties de ce travail s’articulent autour de l’évaluation pronostique du coma post-anoxique, choisie comme application pilote. Un petit nombre d’enregistrement longue durée a été réalisé, et des enregistrements existants ont été récupérés au CHU Grenoble.Nous commençons par valider l’efficacité des réseaux de neurones profonds pour l’analyse EEG d’échantillons bruts. Nous choisissons à cet effet de travailler sur la classification de stades de sommeil. Nous utilisons un réseau de neurones convolutionnel adapté pour l’EEG que nous entrainons et évaluons sur le jeu de données SHHS (Sleep Heart Health Study). Cela constitue le premier system neuronal à cette échelle (5000 patients) pour l’analyse du sommeil. Les performances de classification atteignent ou dépassent l’état de l’art.En utilisation réelle, pour la plupart des applications cliniques le défi principal est le manque d’annotations adéquates sur les patterns EEG ou sur de court segments de données (et la difficulté d’en établir). Les annotations disponibles sont généralement haut niveau (par exemple, le devenir clinique) est sont donc peu nombreuses. Nous recherchons comment apprendre des représentations compactes de séquences EEG de façon non-supervisée/semi-supervisée. Le domaine de l’apprentissage non supervisé est encore jeune. Pour se comparer aux travaux existants nous commençons avec des données de type image, et investiguons l’utilisation de réseaux adversaires génératifs (GANs) pour l’apprentissage adversaire non-supervisé de représentations. La qualité et la stabilité de différentes variantes sont évaluées. Nous appliquons ensuite un GAN de Wasserstein avec pénalité sur les gradients à la génération de séquences EEG. Le système, entrainé sur des séquences mono-piste de patients en coma post anoxique, est capable de générer des séquences réalistes. Nous développons et discutons aussi des idées originales pour l’apprentissage de représentations en alignant des distributions dans l’espace de sortie du réseau représentatif.Pour finir, les signaux EEG multipistes ont des spécificités qu’il est souhaitable de prendre en compte dans les architectures de caractérisation. Chaque échantillon d’EEG est un mélange instantané des activités d’un certain nombre de sources. Partant de ce constat nous proposons un système d’analyse composé d’un sous-système d’analyse spatiale suivi d’un sous-système d’analyse temporelle. Le sous-système d’analyse spatiale est une extension de méthodes de séparation de sources construite à l’aide de couches neuronales avec des poids adaptatifs pour la recombinaison des pistes, c’est à dire que ces poids ne sont pas appris mais dépendent de caractéristiques du signal d’entrée. Nous montrons que cette architecture peut apprendre à réaliser une analyse en composantes indépendantes, si elle est entrainée sur une mesure de non-gaussianité. Pour l’analyse temporelle, des réseaux convolutionnels classiques utilisés séparément sur les pistes recombinées peuvent être utilisés. / The objective of this research is to explore and develop machine learning methods for the analysis of continuous electroencephalogram (EEG). Continuous EEG is an interesting modality for functional evaluation of cerebral state in the intensive care unit and beyond. Today its clinical use remains more limited that it could be because interpretation is still mostly performed visually by trained experts. In this work we develop automated analysis tools based on deep neural models.The subparts of this work hinge around post-anoxic coma prognostication, chosen as pilot application. A small number of long-duration records were performed and available existing data was gathered from CHU Grenoble. Different components of a semi-supervised architecture that addresses the application are imagined, developed, and validated on surrogate tasks.First, we validate the effectiveness of deep neural networks for EEG analysis from raw samples. For this we choose the supervised task of sleep stage classification from single-channel EEG. We use a convolutional neural network adapted for EEG and we train and evaluate the system on the SHHS (Sleep Heart Health Study) dataset. This constitutes the first neural sleep scoring system at this scale (5000 patients). Classification performance reaches or surpasses the state of the art.In real use for most clinical applications, the main challenge is the lack of (and difficulty of establishing) suitable annotations on patterns or short EEG segments. Available annotations are high-level (for example, clinical outcome) and therefore they are few. We search how to learn compact EEG representations in an unsupervised/semi-supervised manner. The field of unsupervised learning using deep neural networks is still young. To compare to existing work we start with image data and investigate the use of generative adversarial networks (GANs) for unsupervised adversarial representation learning. The quality and stability of different variants are evaluated. We then apply Gradient-penalized Wasserstein GANs on EEG sequences generation. The system is trained on single channel sequences from post-anoxic coma patients and is able to generate realistic synthetic sequences. We also explore and discuss original ideas for learning representations through matching distributions in the output space of representative networks.Finally, multichannel EEG signals have specificities that should be accounted for in characterization architectures. Each EEG sample is an instantaneous mixture of the activities of a number of sources. Based on this statement we propose an analysis system made of a spatial analysis subsystem followed by a temporal analysis subsystem. The spatial analysis subsystem is an extension of source separation methods built with a neural architecture with adaptive recombination weights, i.e. weights that are not learned but depend on features of the input. We show that this architecture learns to perform Independent Component Analysis if it is trained on a measure of non-gaussianity. For temporal analysis, standard (shared) convolutional neural networks applied on separate recomposed channels can be used.

Page generated in 0.0613 seconds