Spelling suggestions: "subject:"controllability"" "subject:"contrôlable""
51 |
Sur la contrôlabilité de quelques systèmes de type paraboliques avec un nombre réduit de contrôles et d'une équation de KdV avec dispersion évanescente / On the controllability of some systems of the parabolic kind with a reduced number of controls and of a KdV equation in the vanishing dispersion limitCarreno-Godoy, Nicolas-Antonio 02 October 2014 (has links)
Ce travail est consacré à l'étude de quelques problèmes de contrôlabilité concernant plusieurs modèles issues de la mécanique des fluides. Dans le Chapitre 2, on obtient la contrôlabilité locale à zéro du système de Navier-Stokes avec contrôles distribués ayant une composante nulle. La nouveauté la plus importante est l'absence de conditions géometriques sur le domaine de contrôle. Le Chapitre 3 étend ce résultat pour le système de Boussinesq, où le couplage avec l'équation de la chaleur permet d'avoir jusqu'à deux composantes nulles dans le contrôle agissant sur l'équation du fluide. Le Chapitre 4 traite l'existence de contrôles insensibilisants pour le système de Boussinesq. En particulier, on montre la contrôlabilité à zéro d'un système en cascade issu du problème d'insensibilisation où le contrôle dans l'équation du fluide possède deux composantes nulles. Pour ces problèmes, on suit une approche classique. On établit la contrôlabilité à zéro du système linéalisé autour de zéro par une inégalité de Carleman pour le système adjoint avec des termes source. Puis, on obtient le résultat pour le système non linéaire par un argument d'inversion locale.Dans le Chapitre 5, on étudie quelques aspects de la contrôlabilité à zéro d'une équation de KdV linéaire avec conditions au bord de type Colin-Ghidaglia. On obtient une estimation du coût de la contrôlabilité à zéro qui est optimal par rapport au coefficient de dispersion. Sa preuve repose sur une inégalité de Carleman avec un comportement optimal en temps. Puis, on montre que le coût de la contrôlabilité à zéro explose exponentiellement par rapport au coefficient de dispersion lorsque le temps final est suffisamment petit. / This work is devoted to the study of some controllability problems concerning some models from fluid mechanics. First, in Chapter 2, we obtain the local null controllability of the Navier-Stokes system with distributed controls having one vanishing component. The main novelty is that no geometric condition is imposed on the control domain. In Chapter 3, we extend this result for the Boussinesq system, where the coupling with the temperature equation allows us to have up to two vanishing components in the control acting on the fluid equation. Chapter 4 deals with the existence of insensitizing controls for the Boussinesq system. In particular, we prove the null controllability of the cascade system arising from the reformulation of the insensitizing problem, where the control on the fluid equation has two vanishing components. For these problems, we follow a classical approach. We establish the null controllability of the linearized system around the origin by means of a suitable Carleman inequality for the adjoint system with source terms. Then, we obtain the result for the nonlinear system by a local inversion argument.In Chapter 5, we study some null controllability aspects of a linear KdV equation with Colin-Ghidaglia boundary conditions. First, we obtain an estimation of the cost of null controllability, which is optimal with respect to the dispersion coefficient. This improves previous results on this matter. Its proof relies on a Carleman estimate with an optimal behavior in time. Finally, we prove that the cost of null controllability blows up exponentially with respect to the dispersion coefficient provided that the final time is small enough.
|
52 |
Contrôle frontière, stabilisation et synchronisation pour des systèmes de lois de bilan en dimension un d'espace / Boundary controllability, stabilization and synchronization for 1-D hyperbolic balance lawsHu, Long 16 August 2015 (has links)
Cette thèse est consacrée à trois sujets dans le domaine du contrôle, qui sont la contrôlabilité exacte frontière, la stabilisation frontière et la synchronisation exacte frontière, des systèmes hyperboliques de lois de bilan. Pour la partie sur la contrôlabilité exacte frontière, on améliore le temps de contrôlabilité exacte pour les systèmes hyperboliques de lois de conservation pour des conditions aux limites générales. On montre aussi que ce temps est optimal. En ce qui concerne les systèmes hyperboliques couplés avec une vitesse caractéristique nulle, nous prouvons que l'on n'a pas la contrôlabilité exacte, même avec des couplages internes dans les équations. Cependant, on montre que l'on peut stabiliser les systèmes par les lois de rétroaction à la frontière du domaine. Dans la deuxième partie, nous nous intéressons à la stabilisation frontière des systèmes hyperboliques de lois de bilan. En utilisant une approche "backstepping", on montre comment stabiliser des systèmes d'abord dans les cas linéaires puis dans les cas quasi-lin éaires. La troisième partie concerne la synchronisation exacte frontière. Nous rappelons d'abord les résultats de contrôlabilité et d'observabilité exacte frontière pour les systèmes couplés d' équations des ondes quasi-linéaires. Puis nous introduisons plusieurs types de synchronisations pour un système d' équations des ondes linéaires, puis quasi-linéaires, couplées avec des conditions aux limites de type Dirichlet, de type Neumann, de type Robin et de type dissipatif dans le cadre de solutions de classe C2. Nous montrons que toutes ces synchronisations peuvent être réalisées en imposant peu de contrôles aux frontières. / This thesis is devoted to three topics in the control field, namely, exact boundary controllability, boundary stabilization and exact boundary synchronization, for hyperbolic systems of balance laws. For the exact boundary controllability part, we first improve the boundary control time for hyperbolic systems of conservation laws with general boundary conditions and show that this control time is sharp. Then for a coupled hyperbolic system with zero characteristic speed, we prove that it is impossible to achieve the corresponding exact boundary controllability even with inner couplings in the equation. However, one can stabilize the system in infinite time by means of boundary feedback laws. For the boundary stabilization part, we show how to stabilize both the n×n linear and quasilinear hyperbolic systems by means of one-sided closed-loop boundary controls. For that a backstepping method is developed. For the exact boundary synchronization part, we first recall both the exact boundary controllability and observability results for coupled systems of quasilinear wave equations. Then several kinds of exact synchronizations are introduced for a coupled system of 1-D linear and quasilinear wave equations with boundary conditions of Dirichlet type, Neumann type, coupled third type and coupled dissipative type in the framework of C2 solutions. We show that all these synchronizations can be realized by means of few boundary controls.
|
53 |
Observation et contrôle de quelques systèmes conservatifs / Observation and control for some conservative systemsLiard, Thibault 04 November 2016 (has links)
Dans cette thèse, nous nous intéressons à la contrôlabilité interne et à son coût pour une ou plusieurs équations aux dérivées partielles conservatives. ?Dans la première partie, nous introduisons et détaillons deux méthodes permettant d'estimer le coût du contrôle (et par dualité, de la constante d'observabilité) de l'équation des ondes avec potentiel $l^{\infty}$ en dimension un d'espace. La première utilise la propagation des ondes le long des caractéristiques en s'appuyant sur le rôle symétrique de la variable de temps et d'espace. La deuxième méthode repose sur la décomposition spectrale de l'équation des ondes et sur l'utilisation des inégalités d'ingham. L'estimation de la constante d'observabilité se ramène alors à l'étude d'un problème d'optimisation faisant intervenir les vecteurs propres du laplacien-dirichlet avec potentiel. Nous fournissons ensuite des propriétés qualitatives sur le minimiseurs ainsi qu'une estimation du minimum ne dépendant que de la mesure de l'ensemble d'observation. ?Dans la deuxième partie, nous étudions la contrôlabilité de certains systèmes d'équations avec un nombre de contrôles réduits, autrement dit le nombre de contrôles est plus petit que le nombre d'équations. En particulier, nous caractérisons exactement les données initiales qui peuvent être contrôlées pour des systèmes d'équations couplées de type schrödinger et nous énonçons une condition nécessaire et suffisante de type kalman pour des systèmes d'équations des ondes couplées. La preuve repose sur une méthode de contrôle fictif combinée à la résolution algébrique d'un système sous-déterminé et sur certains résultats de régularité. / In this work, we focus on the internal controllability and its cost for some linear partial differential equations. In the first part, we introduce and describe two methods to provide precise estimates of the cost of control (and by duality, of the observability constant) for general one dimensional wave equations with potential. The first one is based on a propagation argument along the characteristics relying on the symmetrical roles of the time and space variables. The second one uses a spectral decomposition of the solution of the wave equation and ingham's inequalities. This relates the estimation of the observability constant to the study of an optimal problem involving dirichlet eigenfunctions of laplacian with potential. We provide some qualitative properties of the minimizers, and also precise bounds on the minimum. In the second part, we are concerned with the controllability of some systems of equations by a reduced number of controls (i.e. the number of controls is less that the number of equations). In particular, in the case of coupled systems of schrödinger equations, we exactly characterize the initial conditions that can be controlled and we give a necessary and sufficient condition of kalman type for the controllability of coupled systems of wave equations. The proof relies on the fictitious control method coupled with the proof of an algebraic solvabilityproperty for some related underdetermined system, as well as on some regularity results.
|
54 |
Etude de l'équation de Korteweg-de Vries en variables lagrangiennes et sa contrôlabilité, stabilisation rapide d'une équation de Schrödinger et méthodes spectrales pour le calcul du contrôle optimal / Study of the Korteweg-de Vries equation in Lagrangian coordinates and its controllability, rapid stabilization of a Schrödinger equation and spectral methods for the numerical computation of the optimal controlGagnon, Ludovick 27 June 2016 (has links)
Cette thèse est consacrée la contrôlabilité lagrangienne, l'étude du champ de vitesse de l'Équation de Korteweg-de Vries, le problème de stabilisation rapide d'une équation aux dérivées partielles linéaires et aux méthodes numériques permettant d'obtenir la convergence des contrôles numériques vers les contrôles optimaux. Dans la première partie, on montre, l'aide de la solution de N-solitons de l'équation de Korteweg-de Vries, qu'il est possible de faire sortir des particules du fluide l’extérieur d'un domaine déterminé en temps arbitrairement petit. Une meilleure approximation du champ de vitesse associée la solution de N-solitons est également présentée, permettant de retrouver en particulier une propriété typique des trajectoires des particules soumises des ondes solitaires : les particules situées plus haut dans le fluide ont un plus grand déplacement. Dans la deuxième partie, la stabilisation rapide d'une équation de Schrödinger est obtenue grâce une méthode inspirée du backstepping en dimension infinie. Une équation de Schrödinger stable est considérée comme l'image d'une transformation ayant comme domaine de définition les solutions de l'équation de Schrödinger stabilisé. La stabilisation de l'équation de Schrödinger est obtenue en montrant l'inversibilité de la transformation. La nouveauté du travail présentée est l'introduction d'une condition d’unicité sur la transformation. Finalement, un filtre spectral, une formulation mixte et une formulation de Nitsche sont proposées comme technique afin d'obtenir numériquement l’observabilité uniforme de l'équation des ondes semi-discrétisée avec une méthode spectrale de Legendre-Galerkin. Une étude numérique de la convergence des contrôles numériques sans l’admissibilité uniforme de l’opérateur de contrôle est également présentée. / This thesis is devoted to the Lagrangian controllability and the analysis of the particle trajectories for the Korteweg-de Vries equation, to the rapid stabilization problem of the bilinear Schrödinger equation and to the convergence of the numerical controls of the wave equation. In the first part, we prove that the N-solitons solution of the Korteweg-de Vries equation allows one to move the particles outside an arbitrarily long domain in an arbitrarily small time. A higher approximation of the velocity field associated to the N-soliton is also presented, allowing to recover a typical property of solitary waves: the higher the particle is located in the fluid, the greater its displacement. These results are of a nonlinear nature since there exists no linear approximation of solitons. In the second part, inspired by the backstepping method, the rapid stabilization of a linearized Schrödinger equation is obtained. The proof consists to prove the invertibility of a transformation mapping the equation to stabilize to a stable linearized Schrödinger equation. The key ingredient of this proof is the introduction of a uniqueness condition. In the last part, a spectral filter, a mixed method and the Nitsche's method are proposed as a remedy to the lack of uniformness of the discrete observability constant for the Legendre-Galerkin semi-discretization of the wave equation. A numerical study of the convergence of the numerical controls is also presented.
|
55 |
Stabilité et contrôlabilité exacte des systèmes distribués couplés avec différents types d'amortissement / Stability and Exact Controllability of Coupled Distributed Systems With Different Damping TypesGhader, Mouhammad 13 April 2018 (has links)
Dans cette thèse, nous étudions la stabilisation et la contrôlabilité exacte de certains problèmes distribués avec différents types d’amortissement. Dans la première partie, nous étudions la stabilité d'un système Bresse mono-dimensionnel avec un contrôle de type mémoire infini et/ou avec une conduction de chaleur donnée par la loi de Cattaneo agissant sur le déplacement de l'angle de cisaillement. Nous considérons le cas intéressant de conditions aux bords de types entièrement Dirichlet. En effet, sous la condition d'égalité de la vitesse de propagation des ondes, nous établissons la stabilité exponentielle du système. Cependant, dans le cas physique naturel lorsque les vitesses de propagation sont différentes, en utilisant une méthode de décomposition de spectre, nous montrons que le système de Bresse n'est pas uniformément stable. Dans ce cas, nous établissons un taux de décroissance énergétique polynomiale. Notre étude est valable pour toutes les autres conditions aux bords mixtes. Dans la deuxième partie, nous étudions la stabilisation d'un système élastique faiblement amorti d’un système couplé abstrait du second ordre. Dans le cadre de certains paramètres, en utilisant la méthode spectrale, nous établissons la stabilité exponentielle du système. Cependant, lorsque le système n'est pas uniformément stable, nous établissons le taux optimal de la décroissance polynomiale de l'énergie du système. Dans la troisième partie, nous étudions la contrôlabilité exacte indirecte d'un système de Timoshenko mono-dimensionnel. En effet, nous considérons les cas lorsque la vitesse de propagation des ondes sont égales ou différentes. Tout d'abord, nous utilisons des analyses non harmoniques pour établir une inégalité d'observabilité faible, qui dépend du rapport des vitesses de propagation des ondes. Ensuite, en utilisant la méthode HUM, nous prouvons que le Système est parfaitement contrôlable et que le temps de contrôle peut être faible. / In this work, we study the stabilization and the exact controllability of some distributed problems. In the first part, we study the stability of a one-dimensional Bresse System with infinite memory type control and/or with heat conduction given by Cattaneo's law acting in the shear angle displacement, where we consider the interesting case of fully Dirichlet boundary conditions. Indeed, under a equal speed of propagation condition, we establish the exponential stability of the System. However, in the natural physical case when the speeds of propagation are different, using a spectrum method, we show that the Bresse System is not uniformly exponentially stable. In this case, we establish a polynomial energy decay rate. Our study is valid for all other mixed boundary conditions. In the second part, we study the stabilization of a weakly damped elastic System of an abstract second order equation. Indeed, under some condition on the parameters, using a spectrum method, we establish the exponential stability of the System. However, when the System is not uniformly stable, using a spectrum method, we establish the optimal polynomial decay rate of the energy of the System. In the third part, we study the indirect boundary exact controllability of a one-dimensional Timoshenko System. Indeed, we consider the cases when the speed waves propagate with equal or different speeds. We use non harmonic analysis to establish weak observability inequality, which depends on the ratio of the waves propagation speeds. Next, using the HUM method, we prove that the System is exactly controllable, and that the control time can be small.
|
56 |
Cadres pour l'analyse multi-perspective des infrastructures critiques / Frameworks for the multi-perspective analysis of critical infrastructuresHan, Fangyuan 23 January 2018 (has links)
Les infrastructures critiques (CIs) sont essentielles au fonctionnement de la société moderne. Leur sécurité et leur fiabilité sont les principales préoccupations. La complexité des CIs exige des approches d'analyse de système capables de voir le problème de plusieurs points de vue. La présente thèse porte sur l'intégration de la perspective de contrôle dans l'analyse de sécurité et de fiabilité des éléments de configuration. L'intégration est d'abord abordée par examiner les propriétés de contrôle d'un microgrid d'alimentation électrique. Un schéma basé sur la simulation est développé pour l'analyse sous différentes perspectives : le service d'approvisionnement, la contrôlabilité et la topologie. Un cadre basé sur la commande prédictive (MPC) est proposé pour analyser le microrgrid dans divers scenarios de défaillance. Ensuite, un cadre multi-perspectif est développé pour analyser les CIs considérant le service d'approvisionnement, la contrôlabilité et la topologie. Ce cadre permet d'identifier le rôle des éléments de CIs et de quantifier les conséquences de scénarios de défaillances, par rapport aux différents perspectives considérées. Afin de présenter le cadre d'analyse, un réseau de transport de gaz réel à travers plusieurs pays de l'Union européenne est considéré comme une étude de cas. En fin, un cadre d'optimisation a trois objectifs est proposé pour la conception de CI : la topologie du réseau et l'allocation des capacités de liaison sont optimisées minimisant la demande non fournie et la complexité structurelle du système, et en même temps maximisant la contrôlabilité du système. Une investigation approfondie sur les multiples objectifs considérés est effectuée pour tirer des informations utiles pour la conception du système. Les résultats de cette thèse démontrent l'importance de développer du cadre d'analyse des CIs considérant de plusieurs perspectives pertinentes pour la conception, l'opération et la protection des CIs. / Critical infrastructures (CIs) provide essential goods and service for modern society. Their safety and reliability are primary concerns. The complexity of CIs calls for approaches of system analysis capable of viewing the problem from multiple perspectives. The focus of the present thesis is on the integration of the control perspective into the safety and reliability analysis of CIs. The integration is first approached by investigating the control properties of a small network system, i.e., an electric power microgrid. A simulation-based scheme is developed for the analysis from different perspectives: supply service, controllability and topology. An optimization-based model predictive control framework is proposed to analyze the microgrid under various failure scenarios. Then, a multi-perspective framework is developed to analyze CIs with respect to supply service, controllability and topology. This framework enables identifying the role of the CI elements and quantifying the consequences of scenarios of multiple failures, with respect to the different perspectives considered. To demonstrate the analysis framework, a benchmark network representative of a real gas transmission network across several countries of the European Union (EU) is considered as case study. At last, a multi-objective optimization framework is proposed for complex CIs design: design of network topology and allocation of link capacities are performed in an optimal way to minimize the non-supplied demand and the structural complexity of the system, while at the same time to maximize the system controllability. Investigation on the multiple objectives considered is performed to retrieve useful insights for system design. The findings of this thesis demonstrate the importance of developing frameworks of analysis of CIs that allow considering different perspectives relevant for CIs design, operation and protection.
|
57 |
Contrôle en temps optimal et nage à bas nombre de ReynoldsLohéac, Jérôme 06 December 2012 (has links) (PDF)
Cette thèse est divisée en deux parties, le fil directeur étant la contrôlabilité en temps optimal. Dans la première partie, après un rappel du principe du maximum de Pontryagin dans le cas des systèmes de dimension finie, nous mettrons en œuvre ce principe sur le cas d'un intégrateur non-holonome connu sous le nom de système de Brockett pour lequel nous imposons des contraintes sur l'état. La difficulté de cette étude provient du fait que l'on considère un problème de contrôle avec des contraintes sur l'état. Après cet exemple, nous nous intéressons à une extension du principe du maximum de Pontryagin au cas des systèmes de dimension infinie. Plus précisément, l'extension que nous considérons s'applique au cas de systèmes exactement contrôlables en tout temps. Typiquement, ce résultat s'applique à l'équation de Schrödinger avec contrôle interne. Pour de tels systèmes, sous une condition de contrôlabilité approchée, depuis un ensemble de temps non négligeable, nous montrons l'existence d'un contrôle bang-bang. Dans la seconde partie, nous étudions le problème de la nage à bas nombre de Reynolds. Une modélisation physique convenable nous permet de le formaliser comme un problème de contrôle. Nous obtenons alors un résultat de contrôlabilité sur ce problème. Plus précisément, nous montrons que quelque soit la forme du nageur, celui-ci peut se déformer légèrement pour suivre une trajectoire imposée. Nous étudions ensuite le cas d'un nageur à symétrie axiale. Les résultats de la première partie permettent alors la recherche d'un contrôle en temps optimal.
|
58 |
Solutions globales, limite de relaxation, contrôlabilité et observabilité exactes, frontières pour des systèmes hyperboliques quasi-linéairesGu, Qilong 18 June 2009 (has links) (PDF)
Cette thèse est essentiellement composée de deux parties. Dans la première partie, on étudie le système d'Euler-Maxwell. En utilisant la méthode d'intégration de l'énergie classique, on montre l'existence et l'unicité de solutions régulières du système avec données initiales petites. Ensuite, on étudie la limite de relaxation en montrant que, le sytème d'Euler-Maxwell converge vers les équations de dérive-diffusion quand le temps de relaxation tend vers zéro. Dans la deuxième partie, on cherche la contrôlabilité et l'observabilité exactes frontières de systèmes hyperboliques quasi-linéaires dans un réseau du type d'arbre. On établit des résultats d'existences de la contrôlabilité et l'observabilité par des méthodes constructives qui sont basées sur la théorie de la solution C1 semi-globale du système hyperbolique quasi-linéaire du premier ordre avec conditions initiales et frontières. Ensuite, on trouve des dualités de la contrôlabilité et l'observabilité.
|
59 |
Théorie de contrôle et systèmes dynamiques / Control theory and dynamical systemsLazrag, Ayadi 25 September 2014 (has links)
Cette thèse est divisée en trois parties. Dans la première partie, nous commençons par décrire des résultats très connus en théorie du contrôle géométrique tels que le théorème de Chow-Rashevsky, la condition de rang de Kalman, l'application Entrée-Sortie et le test linéaire. De plus, nous définissons et nous étudions brièvement la contrôlabilité locale au voisinage d'un contrôle de référence au premier et au second ordre. Dans la deuxième partie, nous donnons une preuve élémentaire du lemme de Franks linéaire pour les flots géodésiques qui utilise des techniques basiques de théorie du contrôle géométrique. Dans la dernière partie, étant donnée une variété Riemanienne compacte, nous prouvons un lemme de Franks uniforme au second ordre pour les flots géodésiques et on applique le résultat à la théorie de la persistance. Dans cette partie, nous introduisons avec plus de détails les notions de contrôlabilité locale au premier et au second ordre. En effet, nous donnons un résultat de contrôlabilité au second ordre dont la preuve est longue et technique. / This thesis is devided into three parts. In the first part we begin by describing some well known results in geometric control theory such as the Chow Rashevsky Theorem, the Kalman rank condition, the End-Point Mapping and the linear test. Moreover, we define and study briefly local controllability around a reference control at first and second order. In the second part we provide an elementary proof of the Franks lemma for geodesic flows using basic tools of geometric control theory. In the last part, given a compact Riemannian manifold, we prove a uniform Franks' lemma at second order for geodesic flows and apply the result in persistence theory. In this part we introduce with more details notions of local controllability at first and second order. In fact, we provide a second order controllability result whose proof is long and technical.
|
60 |
Eléments d'analyse et de contrôle dans le problème de Hele-Shaw / Elements of analysis and control in the Hele-Shaw problemRunge, Vincent 25 September 2014 (has links)
Cette thèse porte sur le traitement mathématique du problème de Hele-Shaw dans l’approximation de Stokes-Leibenson. À l’aide d’une transformation de type Helmholtz- Kirchhoff, nous explicitons une équation d’évolution du contour fluide valable pour tout type d’écoulement plan. Cette équation généralise des résultats précédents et permet alors d’établir un schéma numérique performant dit du quasi-contour, qui se réduit à un problème de Cauchy. Nous considérons ensuite l’étude du problème par transformations conformes menant à l’équation de Polubarinova-Galin. Dans le cas simple d’un contour représenté par un trinôme à coefficients réels, nous réussissons à expliciter la solution exacte du problème. Notons que les trajectoires des solutions exactes permettent de préciser la position de la frontière des domaines d’univalence décrits par les trinômes. Enfin, nous introduisons des paramètres de contrôle sous forme de coefficients d’un multipôle superposé à la source. Des conditions suffisantes de contrôlabilité sont établies et des résultats de contrôle optimal sont explicités pour les solutions binomiales et trinomiales. L’introduction de paramètres de contrôle permet de comprendre le lien qui relie les moments de Richardson à l’équation de Polubarinova-Galin. / This PhD thesis deals with the mathematical treatment of the Hele–Shaw problem in the Stokes–Leibenson approximation. By an Helmholtz–Kirchhoff transformation, we exhibited an evolutive equation of the fluid contour applicable to all type of planar fows. This equation generalizes previous results and also allows to state an efficient numerical scheme called quasi-contour’s, which is a simple Cauchy problem. We then consider the study of this problem using conformal transformations leading to the Polubarinova-Galin equation. In the simple case of a contour representing by a trinomial with real coefficients, we succeeded in exhibiting the exact solution of the problem. Notice that the trajectories of the exact solutions enable to precise the position of frontiers of univalent domains described by trinomials. Finally, we introduce control parameters under the form of coefficients of a multipole superposed to the source. Sufficient conditions of controllability are stated and results on optimal control established for the binomial and trinomial cases. Introduction of control parameters allows us to understand the link, which bound Richardson’s moments to the Polubarinova-Galin equation.
|
Page generated in 0.0891 seconds