1 |
Low Reynolds number flow control through small-amplitude high-frequency motionCleaver, David January 2011 (has links)
There is currently growing interest in the field of Micro Air Vehicles (MAVs). A MAV is characterized by its low Reynolds numbers flight regime which makes lift and thrust creation a significant challenge. One possible solution inspired by nature is flapping flight, but instead of the large-amplitude low-frequency motion suited to the muscular actuators of nature, small-amplitude high-frequency motion may be more suitable for electrical actuators. In this thesis the effect of small-amplitude high-frequency motion is experimentally investigated focusing on three aspects: general performance improvement, deflected jets, and the effect of geometryResults presented herein demonstrate that using small-amplitude high-frequency plunging motion on a NACA 0012 airfoil at a post-stall angle of attack of 15° can lead to significant thrust production accompanying a 305% increase in lift coefficient. At low Strouhal numbers vortices form at the leading-edge during the downward motion and then convect into the wake. This ‘mode 1’ flow field is associated with high lift but low thrust. The maximum lift enhancement was due to resonance with the natural shedding frequency, its harmonics and subharmonics. At higher Strouhal numbers the vortex remains over the leading-edge area for a larger portion of the cycle and therefore loses its coherency through impingement with the upward moving airfoil. This ‘mode 2’ flowfield is associated with low lift and high thrust. At angles of attack below 12.5° very large force bifurcations are observed. These are associated with the formation of upwards or downwards deflected jets with the direction determined by initial conditions. The upwards deflected jet is associated with the counter-clockwise Trailing Edge Vortex (TEV) loitering over the airfoil and thereby pairing with the clockwise TEV to form a dipole that convects upwards. It therefore draws fluid from the upper surface enhancing the upper surface vortex leading to high lift. The downwards deflected jet is associated with the inverse. Deflected jets were not observed at larger angles of attack as the asymmetry in the strength of the TEVs was too great; nor at smaller amplitudes as the TEV strength was insufficient. To understand the effect of geometry comparable experiments were performed for a flat plate geometry. At zero degrees angle of attack deflected jets would form, as for the NACA 0012 airfoil, however their direction would switch sinusoidally with a period on the order of 100 cycles. The lift coefficient therefore also switched. At 15° angle of attack for Strouhal numbers up to unity the performance of the flat plate was comparable to the NACA 0012 airfoil. Above unity, the upper surface and lower surface leading-edge vortices form a dipole which convects away from the upper surface resulting in increased time-averaged separation and reduced lift.
|
2 |
CHARACTERIZATION OF ZERO MASS FLUX FLOW CONTROL FOR LOW SPEED AIRFOIL SEPARATION CONTROLPern, Nan Jou 01 January 2008 (has links)
An adaptive wing, a zero mass ux ow control device for low speed airfoil separation control, is investigated both experimentally and computationally at low speeds. The adaptive mechanism in the wings provides variable camber that can be actuated across a range of frequencies and amplitudes. Piezoelectric actuators are housed in a NACA 4415 airfoil with a chord length of :203 m. The entire adaptive wing assembly is then wrapped under a layer of latex membrane to provide a exible and smooth upper surface pro le. Experimental diagnostics include ow visualization, particle image velocimetry, as well as lift and drag measurements. The numerical simulation uses a 2D incompressible CFD code based on a nite-volume structured formulation with a chimera overset grid for the purpose of parallel computing. In the current study, the dimensionless speed range examined is 2:5 104 Re 1:5 105, where particular focus is given to Re 7:5 104, where Re = U` . All experiments and simulations are conducted in the range of attack angles from 0 24 and between reduced frequency values from 0 f+ 1:09, where f+ = f` U1 . Both experimental and computational results show that the region of separation is reduced when the actuation is turned on, thus enhancing aerodynamic e ciency. The maximum coe cient of lift increases by 26% when the reduced frequency, f+, is approximately :2, where the ow control mechanism appears to be most e ective. Phase-locked PIV and CFD vorticity plots reveal that the downward motion of the surface actuation decelerates the boundary ow and increases surface pressure, resulting in the formation of a series of cross-stream vortices that provides uid entrainment towards the suction surface, hence reducing separation.
|
3 |
The relationship between consumer debt and mental healthSimmons, Jennifer 01 May 2013 (has links)
Consumer debt is a growing phenomenon in the US and throughout the world. The beginning of the 21st century has been defined by such an incredible growth in consumer debt that American families have increased their debt relative to personal income four times faster than in the 1990s. Since the Federal Reserve began measuring the amount of American consumer debt and consumer income in the 1980s, consumer debt never exceeded consumer income until 2004 when it reached 104.8% of income. In the last two decades, researchers have observed a significant correlation between debt and mental health. The purpose of this thesis is to examine a comprehensive sample of previous quantitative research conducted on the relationship between debt and mental health. This thesis discusses the research in the following categories: 1) increased debt as a contributor to decreased mental health; 2) decreased mental health as a contributor to increased debt; 3) high correlation between debt and mental health risks.
|
4 |
Behaviorální modely aktivních prvků s nezávislým víceparametrovým elektronickým řízením / Behavioral models of active elements with possibility of independent multi-parameter controlNovotný, Jakub January 2016 (has links)
This thesis is focused on behavioral modelling of active elements with independent multi-parameter electronic control using comercially available components. In a first part of the thesis, CVDIBA, CVDOBA, CVCC and OC elements are discussed. The functionality is verified by simulations using OrCAD PSpice. Used components are diamond transistor OPA860, variable gain amplifier LMH6505, differencing amplifier AD830, low distortion differential driver AD8138, current conveyor EL2082 and current mode four quadrant multiplier EL4083. Four active elements are further built on PCB and measured. Some applications like low pass filter, high pass filter, all pass filter and reconfigurable filter.
|
Page generated in 0.0551 seconds