• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 846
  • 301
  • 196
  • 188
  • 81
  • 72
  • 38
  • 25
  • 19
  • 13
  • 10
  • 9
  • 9
  • 6
  • 6
  • Tagged with
  • 2306
  • 675
  • 520
  • 324
  • 321
  • 295
  • 266
  • 212
  • 182
  • 166
  • 165
  • 164
  • 163
  • 160
  • 159
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
421

Microencapsulation d’un adhésif sensible à la pression par des procédés d’atomisation / Microencapsulation of a pressure sensitive adhesive by methods based on atomization

Gavory, Cécile 08 October 2012 (has links)
L'objectif de ce travail de thèse consiste en l'étude de l'encapsulation, par des procédés d'atomisation, d'un adhésif sensible à la pression se présentant sous la forme d'une émulsion aqueuse. Des microparticules de diamètres moyens inférieurs à 50 μm et à base d'éthylcellulose plastifiée ont été élaborées par spray-drying ; la proportion d'adhésif incorporé a pu atteindre 25% en masse. L'encapsulation a également été réalisée par spraycooling avec des matières d'enrobage fusibles, notamment avec une huile de palme totalement hydrogénée. Un plan de criblage a été réalisé et a permis d'identifier des conditions optimales avec 50% d'adhésif et 2% d'un tensioactif lipophile : des tailles équivalentes aux précédentes et une adhésion maximale de l'ordre de 6 N après rupture des particules ont été obtenues. Le polymorphisme relatif aux matières grasses a été mis en évidence et des analyses couplées ont permis de mettre au point un traitement thermique adéquat pour s'en affranchir. Des tests de résistance mécaniques de microparticules unitaires de diamètres inférieures à 20 μm ont été menés et ont montré pour les deux types de particules des niveaux de forces de rupture de quelques centaines de micronewtons et une relation quasi linéaire entre ces forces et les tailles de particules / The aim of this work was to microencapsulate a water-based pressure sensitive adhesive by mechanical methods based on atomization. Microparticles having a mean diameter inferior to 50 μm have been produced by spray-drying with a wall material made up of plastified ethylcellulose; the proportion of adhesive incorporated reached 25% w/w. Besides, the microencapsulation of the adhesive was achieved by spray-cooling with fusible wall materials. A totally hydrogenated palm oil was especially selected. An experimental screening design was carried out: optimal formulation conditions were identified, namely 50% adhesive and 2% of a lipophilic emulsifier. Mean diameter size of the microparticles collected was equivalent to the spray-dried one and their adhesive forces reached 6 N after crushing. Polymorphism inherent in fats subjected to quenching was brought to light and coupled analyses enabled to set an appropriate thermal treatment to overcome it. Mechanical tests performed on unitary microparticles having diameters inferior to 20 μm and elaborated by both spray methods revealed that the order of magnitude of the crushing forces was about few hundreds micronewtons and the forces raised almost linearly with the particles size
422

Efeito da encapsulação de licopeno na sua estabilidade e biodisponibilidade / Effect of encapsulation of lycopene on their stability and bioavailability

Julio Rafael Pelissari 23 May 2014 (has links)
Licopeno, um pigmento natural considerado o mais potente antioxidante dentre os carotenoides, é oque tem maior incidência no soro humano. Seu consumo regular está relacionado principalmente com a prevenção do câncer de próstata. Porém, estudos também demonstram sua relação com a prevenção de câncer de pâncreas e bexiga, doenças cardiovasculares como a aterosclerose e doenças neurodegenerativas. Todavia, por ser altamente insaturado o licopeno é susceptível à degradação, sendo degradado na presença de luz, oxigênio e se exposto a altas temperaturas. A microencapsulação entra como uma alternativa para tentar garantir maior estabilidade a este carotenoide. A técnica de spray-chilling, por dispensar o emprego de altas temperaturas e solventes durante o processo de atomização, representa uma alternativa promissora na encapsulação do licopeno. Os objetivos deste trabalho foram encapsular uma solução oleosa de licopeno (10%) através da técnica de spray-chilling,utilizando gordura vegetal low trans como carreador, caracterizar as micropartículas obtidas e avaliar a biodisponibilidade do licopeno livre e encapsulado em ratos wistars. Foram formulados seis tratamentos, que diferiam pela concentração de solução comercial de licopeno, sendo T1 com 20%, T2 com 23,1%, T3 com 28,6%, T4 com 33,3%, T5 com 17,9% mais 10% de goma arábica e T6 com 19,2% mais 5% de carboximetilcelulose (CMC). As micropartículas obtidas destes tratamentos foram avaliadas quanto a tamanho e distribuição, morfologia por microscopia eletrônica de varredura (MEV), espectroscopia de infravermelho com transformadas de Fourier (FT-IR), difração de raios-X (DRX). A estabilidade do licopeno encapsulado foi avaliada em diferentes condições de armazenamento (sob vácuo, umidade relativa de 33%, temperatura de refrigeração e ambiente) e também foi determinada por meio de quantificações periódicas de licopeno, bem como através da análise análise da cor instrumental. A biodisponibilidade foi avaliada utilizando-se 68 animais divididos em grupos, para os quais se administrou por gavagem o licopeno livre e o encapsulado. O tamanho das micropartículas obtidas ficou em torno de 60-110 µm e a distribuição foi polidispersa, independente da concentração de licopeno. A microscopia revelou micropartículas esféricas, com superfície rugosa, com alguns poros e tamanhos variados. No FT-IR verificou-se que não houve formação de ligações distintas na solução oleosa de licopeno e nas amostras atomizadas. Nos difratogramas observou-se a presença da forma polimórfica β para o agente carreador e para as micropartículas. Na estabilidade a adição da goma arábica e o armazenamento sob temperatura de refrigeração e vácuo, foram as melhores condições para retardar a degradação do licopeno. Os resultados dos ensaios de biodisponibilidade foram inconclusivos. Desta forma, conclui-se que é possível encapsular licopeno através da técnica de spray-chilling, porém, para trabalhos futuros, seriam necessários aprimoramentos na técnica de encapsulação e/ou na formulação para conferir maior proteção ao carotenoide, bem como adequações na metodologia para determinação de sua biodisponibilidade, para obtenção de resultados conclusivos. / Lycopene, a natural pigment considered the most potent antioxidant among the carotenoids, it has the higher incidence in the human serum. Its regular consumption is mainly related with the prevention of prostate cancer. However, studies also show its relation to the prevention of pancreatic cancer and bladder cancer, cardiovascular diseases such as atherosclerosis and neurodegenerative diseases. However, by being highly unsaturated the lycopene is susceptible to degradation, being degraded in the presence of light, oxygen and if exposed to high temperatures. The microencapsulation comes like an alternative to ensuring higher stability for this carotenoid. The technique of spray-chilling represents a promising alternative to encapsulation of lycopene. The aims of this study were to encapsulate an oily solution of lycopene (10%) through of the technique of spray-chilling, using a low-trans fat as carrier, to characterize the obtained microparticles and to evaluate the bioavailability of lycopene free and encapsulated in Wistar rats. Six treatments were formulated, that differed by the content of oily solution of lycopene:T1 with 20%, T2 with 23.1%, T3 with 28.6%, T3 with 28.6%, T4 with 33.3%, T5 with 17.9% plus 10% of Arabic gum and T6 with 19.2% plus 5% of carboxymethylcellulose (CMC). The microparticles obtained from these treatments were evaluated for size and distribution, morphology by scanning electron microscopy (SEM), infrared spectroscopy with Fourier transform (FT-IR) and X-ray difraction (XRD). The stability of the lycopene encapsulated was evaluated by its periodic quantification at different storage conditions (vacuum, relative humidity of 33%, refrigeration temperature and environment temperature). Instrumental color, \"L\" and \"a\" parameters, also was measured. The bioavailability was evaluated using 68 animals, for which the free and lycopene encapsulated were administered by gavage. The size of microparticles obtained was around 60-110 µm and the distribution was polydisperse, independent of the concentration of lycopene. The microscopy revealed spherical microparticles, with rough surface, with some pores and varying sizes. In the FT-IR it was found that there was no formation of distinct bonds in oily solution of lycopeno and the atomized samples. In the diffraction patterns observed the presence of polymorphic form \"β\" for the carrier agent and microparticles. On the stability the addition of Arabic gum and the storage at refrigerator temperature under vacuum, were the best conditions to delay the degradation of lycopene. The results of bioavailability assays were inconclusive. As conclusion, it is possible to encapsulate lycopene using the technique of spray-chilling but to future works, would be required improvements in the technique of encapsulation and/or formulations to give more protection to the carotenoid, as well as adjustments in the methodology for determination of their bioavailability, in order to obtaining conclusive results.
423

Spray Cooling with HFC-134a and HFO-1234yf for Thermal Management of Automotive Power Electronics

Yaddanapudi, Satvik Janardhan 12 1900 (has links)
This study aims to experimentally investigate the spray cooling characteristics for active two-phase cooling of automotive power electronics. Tests are conducted on a small-scale, closed loop spray cooling system featuring a pressure atomized spray nozzle. Two types of refrigerants, HFC-134a (R-134a) and HFO-1234yf, are selected as the working fluids. The test section (heater), made out of oxygen-free copper, has a 1-cm2 plain, smooth surface prepared following a consistent procedure, and would serve as a baseline case. Matching size thick film resistors, attached onto the copper heaters, generate heat and simulate high heat flux power electronics devices. The tests are conducted by controlling the heat flux in increasing steps, and recording the corresponding steady-state temperatures to obtain cooling curves. The working fluid is kept at room temperature level (22oC). Performance comparisons are made based on heat transfer coefficient (HTC) and critical heat flux (CHF) values. Effects of spray characteristics and liquid flow rates on the cooling performance are investigated with the selected coolants. Three types of commercially available nozzles that generate full-cone sprays with fine droplets are utilized in the tests. Effect of liquid flow rate is evaluated varying flow rates at 2, 3, 4 ml/s. The experimental results obtained from this study provide a framework for spray cooling performance with the current and next-generation refrigerants aimed for advanced thermal management of automotive power electronics.
424

Fundamentals of Soft, Stretchable Heat Exchanger Design

January 2020 (has links)
abstract: Deformable heat exchangers could provide a multitude of previously untapped advantages ranging from adaptable performance via macroscale, dynamic shape change (akin to dilation/constriction seen in blood vessels) to enhanced heat transfer at thermal interfaces through microscale, surface deformations. So far, making deformable, ‘soft heat exchangers’ (SHXs) has been limited by the low thermal conductivity of materials with suitable mechanical properties. The recent introduction of liquid-metal embedded elastomers by Bartlett et al1 has addressed this need. Specifically, by remaining soft and stretchable despite the addition of filler, these thermally conductive composites provide an ideal material for the new class of “soft thermal systems”, which is introduced in this work. Understanding such thermal systems will be a key element in enabling technology that require high levels of stretchability, such as thermoregulatory garments, soft electronics, wearable electronics, and high-powered robotics. Shape change inherent to SHX operation has the potential to violate many conventional assumptions used in HX design and thus requires the development of new theoretical approaches to predict performance. To create a basis for understanding these devices, this work highlights two sequential studies. First, the effects of transitioning to a surface deformable, SHX under steady state static conditions in the setting of a liquid cooling device for thermoregulation, electronics and robotics applications was explored. In this study, a thermomechanical model was built and validated to predict the thermal performance and a system wide analysis to optimize such devices was carried out. Second, from a more fundamental perspective, the effects of SHXs undergoing transient shape deformation during operation was explored. A phase shift phenomenon in cooling performance dependent on stretch rate, stretch extent and thermal diffusivity was discovered and explained. With the use of a time scale analysis, the extent of quasi-static assumption viability in modeling such systems was quantified and multiple shape modulation regime limits were defined. Finally, nuance considerations and future work of using liquid metal-silicone composites in SHXs were discussed. / Dissertation/Thesis / Doctoral Dissertation Engineering 2020
425

NUMERICAL INVESTIGATION OF AIR-MIST SPRAY COOLING AND SOLIDIFICATION IN SECONDARY ZONE DURING CONTINUOUS CASTING

Vitalis Ebuka Anisiuba (11828069) 20 December 2021 (has links)
As a result of the intense air-water interaction in the spray nozzle, air-mist spray is one of the most promising technologies for attaining high heat transfer. CFD simulations and multivariable linear regression were used in the first part of this study to analyze the air-mist spray produced by a flat-fan atomizer and to predict the heat transfer coefficient using the casting operating conditions such as air pressure, water flow rate, cast speed and standoff distance. For the air-mist spray cooling simulation, a four-step simulation method was utilized to capture the turbulent flow and mixing of the two fluids in the nozzle, as well as the generation, transport, and heat transfer of droplets. Analysis of the casting parameters showed that an increase in air pressure results in efficient atomization, increases the kinetic energy of the droplets and produces smaller droplet size thus, the cooling of the slab increases significantly. Also, a decrease in water flow rate, standoff distance and casting speed would result in more efficient cooling of the steel slab. The second part of the study investigated the solidification of steel in the secondary cooling region. Caster geometry and casting parameters were studied to evaluate their impact on the solidification of steel. The parameters studied include roll gap, roll diameter, casting speed and superheat. It was found that a smaller ratio of roll gap to roll diameter is more efficient for adequate solidification of steel without any defect. Casting speed was found to have a significant effect on the solidification of steel while superheat was found to be insignificant in the secondary zone solidification. The result from the air-mist spray cooling was integrated into the solidification model to investigate the solidification of steel in the entire caster and predict the surface temperature, shell growth and metallurgical length. To replicate real casting process, temperature dependent material properties of the steel were evaluated using a thermodynamic software, JMatPro. The air-mist spray model was majorly investigated using ANSYS Fluent 2020R1 CFD tool while the solidification of steel was studied using STARCCM+ CFD software. Using the findings from this study, continuous casting processes and optimization can be improved.
426

Využití vysokotlakého chlazení na dlouhotočných automatech / Use of High-pressure Cooling System for Long-turn Machines

Kinc, Jiří January 2015 (has links)
The thesis describe high-pressure cooling system and present experiment, when is using this cooling technology for turning cylindrical workpiece to long-turn machines. Workpiece manufactured using high-pressure cooling system is compares with Workpiece manufactured using low-pressure cooling system. Results are analyzed, evaluated and plotted in a single graphical relationships. The thesis is completed the analysis, discussion and recommendations regarding the using of high-pressure cooling.
427

EVALUATING MITIGATION STRATEGIES TO PROMOTE RECOVERY FROM ACUTE HYPERTHERMIA IN SWINE

Kouassi R Kpodo (8088257) 06 December 2019 (has links)
Heat stress (HS) is one of the consequential important problems facing the swine industry. The negative effects of HS include reduced growth performance, reproductive efficiency, and carcass quality as well as increased morbidity and mortality. Although, the swine industry has developed several abatement strategies (i.e., fans, cooling pads, sprinklers, etc.), these approaches may be ineffective in the future as global temperatures continue to rise and the frequency of more severe heat waves increases in regions where animal agriculture is prevalent. These extreme heat events put pigs (especially those approaching market weight) at risk for acute hyperthermia that can lead to death unless body temperature is rapidly returned to euthermia and thermoregulatory function is restored.Therefore, evaluating mitigation strategies to promote recovery from acute hyperthermia is of utmost importance for improving pigs’ health and well-being and ensuring profitability and food security. In four experiments, the existence of microclimates in grow-finish barns during late summer was ascertained and a rapid cooling technique using cold water dousing and feed removal to promote recovery from acute hyperthermia in pigs was evaluated. In the first study, it was determined that microclimates exist in grow-finish barns and that pigs raised in pens that were not located directly below air inlets and ventilation fans had greater body temperature and reduced feed efficiency despite similarities in the in-barn ambient temperature and relative humidity. These data exemplifythe importance of adequate ventilation systems in swine barns and the impact of microclimates on pigs’ health and productivity during warm summer months. In the second study, grow-finish pigs that did not have feed access were exposed to acute HS and then rapidly or gradually cooled. Following the acute HS and recovery phase, all pigs were maintained under thermoneutral conditions and then euthanized over three days to determine the temporal effects of the cooling treatment on body temperature and intestinal integrity. The results showed that rapid cooling following acute hyperthermia in pigswas effective in returning body temperature to euthermia more rapidly compared to gradual cooling and rapid cooling prevented further intestinal damage. Based on these results, it was hypothesized that feed removal may have played a role in the effectiveness of rapid cooling. Therefore, a third experiment was conducted in which grow-finish pigs with or without access to feed were exposed to an acute HS challenge and then rapidly cooled. This study concluded that feed access was a determinant factor in the cooling outcome, as the gastrointestinal temperature returned to euthermia during the rapid cooling period more rapidly when feed was removed. Finally, a fourth study was conducted to evaluate the effects of feed removal in the absence of rapid cooling on the systemic inflammatory response and short-term growth performance of grow-finish pigs. However, it was determined that feed removal alone did not reduce the inflammatory response as expected. Overall, these studies demonstrate the risk forgrow-finish pigs during summer heat events and the potential use of rapid cooling in combination with feed removal for promoting recovery from acute hyperthermia in pigs.
428

Absorption cooling in district heating network: Temperature difference examination in hot water circuit

Yuwardi, Yuwardi January 2013 (has links)
Absorption cooling system driven by district heating network is relized as a smart strategy in Sweden. During summer time when the heating demand is low, the excessive hot water can be directly sold to drive absorption chillers instead of decreasing its production. In addition, this is also one answer to satisfy the cooling demand in more environmentally way since currently only around 26% of cooling demand in Sweden is satisfied by district cooling, the rest is fulfilled by individual air conditioning. Realizing this potential, the purpose of this study is to examine the returning hot water temperature in the district heating network with supply temperature of 70°C and also the effect to the absorption chiller’s COP. Through the simulation result, it is found out that the lowest possible returning water temperature is 55 °C at COP 0,69 with heat rejection (re-cooling) temperature water at 22 °C. This implies that the desired returning hot water temperature of 47 °C cannot be achieved. The lower returning hot water temperature is preferable since it gives the district heating network benefit in term of less distribution pump work, and energy recovery for the condensation process at central heating plant.
429

Investigation of new heat exchanger design performance for solar thermal chemical heat pump

Cordova, Cordova January 2013 (has links)
The emergence of Thermally Driven Cooling system has received more attention recently due to its ability to utilize low grade heat from engine, incinerator or simple flat plate solar collector which are considered as renewable energy sources. ClimateWell AB located in Stockholm has been developing this cooling system based on its patented chemical heat pump technology. The heat pump with its tube shape is put under the absorber as in simple flat plate solar collector making it possible be directly attached on the roof without any additional solar collector. A high performance heat exchanger is needed by its reactor to absorb the energy efficiently during the desorption process as well as to recover heat during the absorption process. Current heat exchanger design has direct contact with the tube’s surface, yet air gaps between the tube and heat exchanger result in alower amount of heat transferred and non-uniform heat distribution across this surface. Moreover, a special treatment which cannot be done by machinery has to be performed in attaching the tube with this heat exchanger. It becomes a problem during mass production since a lot of man power is needed. A new heat exchanger design was proposed to overcome those limitations. This design has annulus which is filled with thermal fluid inside. This fluid will make perfect contact to the heat pump tube’s surface and eliminate the air gap. Furthermore, the need of man power in its production can be minimized. Even though perfect contact can be achieved, the fluid in this new design will increase thermal resistance in the radial direction. Therefore, an investigation has to be conducted to evaluate the performance of this new heat exchanger design based on heat transfer coefficient under steady state condition. The performance investigation also included the influence of various thermal fluids which will be used for this new heat exchanger. The work performed by doing simulation in COMSOL continued with validation of the result with experiment in laboratory. New heat exchanger design efficiency was only 50% while the current one was 82% during the desorption process. In this process, the fluid’s thermal conductivity was the most influencing fluid property. During absorption process, two heat recovery methods are used. First is by flowing the fluid inside the annulus and second is by using additional heat recovery pipe that is attached outside the heat exchanger surface. The first method gave the highest UA value around 34 W/K while the second one gave almost the same value as the current design which is around 11 W/K. In the first method, the thermal fluid’s viscosity strongly influenced its UA value while the second method is greatly influenced by fluid’s heat conductivity.
430

CHARACTERIZATION OF HEAT TRANSFER AND EVAPORATIVE COOLING OF HEAT EXCHANGERS FOR SORPTION BASED SOLAR COOLING APPLICATIONS

González Morales, César Augusto January 2013 (has links)
The content of this Master thesis is the characterization of three different cross unmixed flow heat exchangers. All of the heat exchangers have different inner geometries and dimensions. In order to perform the characterization of these heat exchangers, measurements of heat transfer were done under different conditions: five different temperatures at the inlet of the sorption side, different mass flow for both inlet sides of the heat exchangers.The heat transfer measurements were done with and without applying indirect evaporative cooling in order to find out the influence of indirect evaporative cooling. This research was done with the objective to find out which heat exchanger presents the best performance. The purpose is to install the heat exchanger in the novel solar driven open air SorLuKo system. This system was developed in Fraunhofer ISE and works under the same principe as the ECOS system. The main objective of the SorLuKo system is to dehumidify and cool a dwelling or small office.

Page generated in 0.0608 seconds