1 |
Towards privacy preserving cooperative cloud based intrusion detection systemsKothapalli, Anirudh Mitreya 08 1900 (has links)
Les systèmes infonuagiques deviennent de plus en plus complexes, dynamiques et vulnérables aux attaques. Par conséquent, il est de plus en plus difficile pour qu'un seul système de détection d'intrusion (IDS) basé sur le cloud puisse repérer toutes les menaces, en raison des lacunes de connaissances sur les attaques et leurs conséquences. Les études récentes dans le domaine de la cybersécurité ont démontré qu'une coopération entre les IDS d'un nuage pouvait apporter une plus grande efficacité de détection dans des systèmes informatiques aussi complexes. Grâce à cette coopération, les IDS d'un nuage peuvent se connecter et partager leurs connaissances afin d'améliorer l'exactitude de la détection et obtenir des bénéfices communs. L'anonymat des données échangées par les IDS constitue un élément crucial de l'IDS coopérative. Un IDS malveillant pourrait obtenir des informations confidentielles d'autres IDS en faisant des conclusions à partir des données observées. Pour résoudre ce problème, nous proposons un nouveau système de protection de la vie privée pour les IDS en nuage. Plus particulièrement, nous concevons un système uniforme qui intègre des techniques de protection de la vie privée dans des IDS basés sur l'apprentissage automatique pour obtenir des IDS qui respectent les informations personnelles. Ainsi, l'IDS permet de cacher des informations possédant des données confidentielles et sensibles dans les données partagées tout en améliorant ou en conservant la précision de la détection. Nous avons mis en œuvre un système basé sur plusieurs techniques d'apprentissage automatique et de protection de la vie privée. Les résultats indiquent que les IDS qui ont été étudiés peuvent détecter les intrusions sans utiliser nécessairement les données initiales. Les résultats (c'est-à-dire qu'aucune diminution significative de la précision n'a été enregistrée) peuvent être obtenus en se servant des nouvelles données générées, analogues aux données de départ sur le plan sémantique, mais pas sur le plan synthétique. / Cloud systems are becoming more sophisticated, dynamic, and vulnerable to attacks. Therefore, it's becoming increasingly difficult for a single cloud-based Intrusion Detection System (IDS) to detect all attacks, because of limited and incomplete knowledge about attacks and their implications. The recent works on cybersecurity have shown that a co-operation among cloud-based IDSs can bring higher detection accuracy in such complex computer systems. Through collaboration, cloud-based IDSs can consult and share knowledge with other IDSs to enhance detection accuracy and achieve mutual benefits. One fundamental barrier within cooperative IDS is the anonymity of the data the IDS exchanges. Malicious IDS can obtain sensitive information from other IDSs by inferring from the observed data. To address this problem, we propose a new framework for achieving a privacy-preserving cooperative cloud-based IDS. Specifically, we design a unified framework that integrates privacy-preserving techniques into machine learning-based IDSs to obtain privacy-aware cooperative IDS. Therefore, this allows IDS to hide private and sensitive information in the shared data while improving or maintaining detection accuracy. The proposed framework has been implemented by considering several machine learning and privacy-preserving techniques. The results suggest that the consulted IDSs can detect intrusions without the need to use the original data. The results (i.e., no records of significant degradation in accuracy) can be achieved using the newly generated data, similar to the original data semantically but not synthetically.
|
Page generated in 0.0917 seconds