Spelling suggestions: "subject:"corpo local""
1 |
Immeubles affines et groupes de Kac-Moody / Affine buildings and Kac-Moody groupsCharignon, Cyril 02 July 2010 (has links)
Le but de ce travail est d’étendre la théorie de Bruhat-Tits au cas des groupes de Kac-Moody sur des corps locaux. Il s’agit donc de définir un espace géométrique sur lequel un tel groupe agit, semblable à l’immeuble de Bruhat-Tits d’un groupe réductif. En fait, la première partie reste dans le cadre de la théorie de Bruhat-Tits puisqu’on y définit une famille de compactification des immeubles affines. C’est dans la seconde partie qu’en s’inspirant de la construction de la première, on aborde le cas des groupes de Kac-Moody. Les espaces obtenus ne vérifient pas toutes les conditions demandées à un immeuble, ils sont donc appelés des masures (bordées). / This work aims at generalizing Bruhat-Tits theory to Kac-Moody groups over local fields. We thus try to construct a geometric space on wich such a group will act, and wich will look like the Bruhat-Tits building of a reductive group. Actually, the first part stays in the field of Bruhat-Tits theory as it exposes a family of compactification of an ordinary affine building. It is in the second part that we move to Kac-Moody theory, using the first part as a guide. The spaces obtained do not satisfy all the requirement for a building,they will be called (bounded) hovels (”masures” in french).
|
2 |
Quantification de groupes p-adiques et applications aux algèbres d'opérateurs. / Quantization of p-adic groups and applications to operator algebras.Jondreville, David 26 June 2017 (has links)
Cette thèse est consacrée à l'étude des déformations des C*-algèbres munies d'une action de groupe, du point de vue de la quantification équivariante non-formelle, dans le cas non-archimédien. Nous construisons une théorie de déformation des C*-algèbres munies d'une action d'un espace vectoriel de dimension finie sur un corps local non-archimédien de caractéristique différente de 2 ainsi que pour des quotients du groupe affine d'un corps local dont le corps résiduel est de cardinal impair. Par ailleurs, nous construisons des familles de 2-cocycles unitaires afin de déformer des groupes quantiques localement compacts agissant sur ces C*-algèbres déformées. / This thesis is devoted to the study of deformation of C*-algebras endowed with a group action, from the perspective of non-formal equivariant quantization, in the non-Archimedean setting. We construct a deformation theory of C*-algebras endowed with an action of a finite dimensional vector space over a non-Archimedean local field of characteristic different from 2 and for quotients of the affine group of a local field whose residue field has cardinality not divisible by 2. Moreover, we construct families of dual unitary 2-cocycles in order to deform locally compact quantum groups acting on these deformed C*-algebras.
|
Page generated in 0.0544 seconds