• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 40
  • 40
  • 15
  • 13
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanisms of excitation and inhibition in the nigrostriatal system

Richardson, Thomas L. January 1979 (has links)
The extracellular responses of neurons in the corpus striatum following single pulse stimulation of the substantia nigra or dorsal raphe nucleus were investigated in urethane anaesthetized rats, nigral stimulation at low intensities (10 v) evoked single large amplitude spikes while higher intensities (10 to 20 v) evoked, in addition, a high frequency burst of small amplitude spikes or waves. Spontaneous large spikes, or those induced by the administration of glutamate, were inhibited by nigral stimulation. The onset of inhibition coincided with the onset of the burst. If the burst was prevented, inhibition no longer occurred. Neither the inhibitory nor the burst response evoked by nigral stimulation was influenced by iontophoretically or systemically administered antagonists of dopamine or by chemical lesions of the dopaminergic neurons of the nigrostriatal pathway. However the excitation of large units by nigral stimulation was reversibly blocked by dopamine antagonists. Stimulation of the dorsal raphe nucleus produced inhibition of spontaneously active striatal neurons. No excitatory response was ever observed. HEP injected into the striatum was transported to cells in the dorsal raphe nucleus and injection of tritiated leucine into the dorsal raphe nucleus produced significant transport of radio labelled protein to the caudate nucleus. It is concluded that the burst response is produced by excitation of striatal interneurons through collaterals of the striatonigral pathway which are intrinsic to the nucleus. Nigral stimulation causes an antidromic activation of the axon and a subsequent orthodromic activation of its collaterals. The interneurons activated by this "axon reflex" are inhibitory in function. It is further concluded that the dopaminergic neurons of the nigrostriatal tract make excitatory synaptic contact with striatal neurons in the central region of the nucleus. At least some of these target neurons project, in turn, to the globus pallidus. / Medicine, Faculty of / Cellular and Physiological Sciences, Department of / Graduate
2

DARPP-32 in the striatum : multiple regulation and physiological role /

Lindskog, Maria, January 1900 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2001. / Härtill 5 uppsatser.
3

Striatal adenosine A₂A receptors /

Svenningsson, Per, January 1900 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst. / Härtill 15 uppsatser.
4

A study of the corpus striatum

Kemp, Janet M. January 1970 (has links)
No description available.
5

In-vivo-Untersuchungen der Wirkung von Neurotoxinen auf das nigrostriatale System der Ratte /

Grote, Christoph. January 1994 (has links) (PDF)
Universiẗat, Diss.--Marburg, 1994.
6

Computergestützte 3D-Rekonstruktionen und stereologische Untersuchungen an Thalamus und Striatum von normalen und pathologisch veränderten Gehirnen des Menschen / Computer assisted 3D-reconstructions and stereological investigations of thalamus and striatum of normal and pathological changed human brains

Müller, Kerstin Anni January 2007 (has links) (PDF)
Es wurden insgesamt sieben Gallozyanin-gefärbte Schnittserien durch die rechte oder linke Hemisphäre von zwei Kontrollfällen (männlich, 28 Jahre, rechte Hemisphäre, weiblich, 65 Jahre, linke Hemisphäre), einem Fall mit Megalenzephalie (männlich, 48 Jahre, linke Hemisphäre), einem Fall von M. Little (65 Jahre, männlich, linke Hemisphäre), einem Fall von Alzheimerscher Krankheit (85 Jahre, weiblich, linke Hemisphäre) und einem Fall mit Huntingtonscher Krankheit (männlich, 49 Jahre, beide Hemisphären) verwendet. Die zentralen Anteile der Hemisphären mit den kompletten Schnittserien durch Thalami und Corpora striata wurden mit einer digitalen Kamera in Nahaufnahmetechnik aufgenommen, mit einem kommerziellen Bildbearbeitungs-programm (Adobe Photoshop 6.0®) aufbereitet und die derart aufbereiteten Bilder am Computer mit einer Computer gestützten 3D-Rekonstruktionssoftware (Amira®) verar-beitet. Ein wesentlicher Schritt in der Bearbeitung besteht in der Abgrenzung von Thalamus und Striatum von den benachbarten Strukturen. Die hohe Schnittdicke von 440 µm erleichterte dabei die zytoarchitektonische Abgrenzung beider Kerngebiete. Anders als erwartet unterliegen auch Serienschnitte mit einer Dicke von 440 µm Schrumpfungsartefakten, die nicht immer auf den ersten Blick erkennbar sind. Aus diesem Grund beschränken sich die 3D-Rekonstruktionen nicht auf das manuelle Abgrenzen von Strukturen. Vielmehr müssen alle Schnitte sorgfältig den Koordinaten des Raumes angepasst, hintereinander in der z-Achse angeordnet und bei Bedarf gedreht und verschoben werden. Die Rekonstruktionssoftware bietet für diese Prozedur eine halbautomatische Unterstützung. Einzelne stark verformte Schnitte mussten aber dennoch teilweise aufwändig der Serie angepasst werden. Amira® bietet vielseitige Möglichkeiten in der Darstellung der räumlich rekonstruierten Schnitte. Durch Interpolation werden die Rohdaten zum Teil stark verändert und die ursprünglich kantigen und eckigen Formen zunehmend geglättet. Diese Glättung ist der Erfahrung/Willkür des Untersuchers anheim gestellt und folglich werden die Grenzen zwischen einer realistischen 3D-Rekonstruktion und einer Fiktion fließend. Neben 3D-Rekonstruktionen lassen sich mit Amira auch die Volumina von Striatum und Thalamus berechnen. Diese Daten wurden mit den stereologisch bestimmten Kernvolumina und Nervenzellzahlen verglichen. Grundsätzlich liegen die mit Amira erhobenen Volumenwerte zwischen 1,4 und 6,65% unter den stereologisch geschätzten Werten. Diese Diskrepanz ist bei der bekannten biologischen Variabilität des menschlichen ZNS akzeptabel und im Vergleich mit Literaturangaben und -abbildungen dürften Form und Größe der rekonstruierten Thalami und Corpora striata der Wirklichkeit weitgehend entsprechen. Die Nervenzellzahlen schwanken dabei in einem weiten Bereich zwischen rund 71 Millionen im Striatum bei Megalenzephalie und weniger als 7 Millionen bei Chorea Huntington. Im Thalamus liegt die Nervenzellzahl zwischen rund 18 Millionen (Kontrollfall) und etwas mehr als 6 Millionen bei dem untersuchten Fall mit M. Little. Berücksichtigt man die vielfältigen physiologischen Verbindungen zwischen Thalamus und Striatum, so lassen die Schwankungen in den Nervenzellzahlen auf komplexe Interaktionen und Defizite bei den untersuchten Fällen schließen. Im Ergebnis unerwartet ist die weitgehende Konstanz in Form und Aussehen von Thalamus und Striatum im Endstadium von Alzheimerscher Demenz und bei einem Fall von M. Little. Offensichtlich stehen globale Atrophie- bzw. Degenerationsprozesse bei der Alzheimerschen Krankheit im Vordergrund mit der Folge, dass Thalamus und Striatum trotz deutlicher Nervenzellausfälle bei erhöhter Zahl von Gliazellen insgesamt nur wenig kleiner werden. Allerdings tat sich bei dem Fall mit M. Alzheimer an der Ventralseite des Thalamus eine Rinne auf, die bei den anderen untersuchten Fällen nicht gefunden und deren Ursache nicht geklärt werden konnte. Dramatisch erschienen die Größen- und Formveränderung des Striatum beim Chorea-Huntington-Fall. Nervenzell- und Gliazellausfälle im Striatum bei Chorea Huntington dürften die ausgeprägten makroskopischen Veränderungen erklären. Die Kombination von Serienschnitttechnik mit hoher Schnittdicke und einer Computer gestützten 3D-Rekonstruktion bietet bisher nie da gewesene und faszinierende Aspekte vom Bau des menschlichen ZNS. Nach Import in spezielle Computersoftware zur Animation von 3D-Modellen eröffnen die 3D-Rekonstruktionen auch neue Aspekte in der Präsentation der vermuteten Funktionsweise des ZNS. Dabei sollte aber in Anbetracht der komplexen methodischen Faktoren immer eine kritische Distanz zu vielfältigen Darstellungsformen am Bildschirm gewahrt bleiben. / In total we investigated seven gallocyanin stained slice series through the right and left hemisphere of two control cases (man, age 28, right hemisphere, female, age 65, left hemisphere), one case of Megalencephaly (man, age 48, left hemisphere), one case of M. Little (man, age 65, left hemisphere), one case of Alzheimers Disease (female, age 85, left hemisphere) and one case of Huntingtons Disease (man, age 49, both hemispheres). The central parts of the hemispheres with the complete slice series through thalamus and striatum were captured with a digital camera and processed with a commercial picture-processing-programme (Adobe Photoshop 6.0®) and the result was further processed to 3D-models with another software (Amira®). One fundamental step in this procedure is the demarcation between thalamus and striatum and their sourrounding cell groups. The high slice thickness of 440 µm makes this much easier. Different from our expactation we found shrinking artefacts even in slices with a thickness of 440 µm, which were not always visible at first sight. For this reason we had to do more than manual demarcation of the structures, e.g. arrangement of all slices in a row in z-axes and rotation of the slices when needed. The reconstruction software can do this semiautomatically, but in some cases we had to do this on our own in a very difficult procedure. Amira® has a lot of possibilities to show the reconstructed slices. The original database is transformated during the reconstruction procedure so that the models are influenced subjective. Besides 3D-reconstructions we can measure the volume of striatum and thalamus with Amira®. We compared this data with the volumes determined with stereological methods and can say that the volumes measured with Amira® lay 1,4-6,65% under the volumes determined with stereological methods. This different is acceptabel in the face of biological variability. The amount of neurons extend from 71 millions in striatum with Megalencephaly to 7 millions in striatum with Huntingtons Disease. In the thalamus it extends from18 millions in a control case to 6 millions in a M.Little case. Unexpected was the constant form and shape of thalamus and striatum in the late stages of neurodegenerative diseases like Alzheimers Disease. We suggest that the undergoing neurons are replaced by glia and so the macroscopical form remains nearly constant. On the other hand we could see dramatically changes in form and size of the striatum in the Huntingtons Disease case. The combination of serial slice technique with high sliche thickness and computer supported 3D-reconstruction offers new and fascinating aspects of the human central nervous system. Knowing the complex methods to get to this reconstructions one should always observe these models critical.
7

Pharmakologische und immunhistochemische Untersuchungen zur Bedeutung striataler Fehlfunktionen des glutamatergen Systems in einem Tiermodell für die primäre paroxysmale Dystonie

Sander, Svenja Esther. January 1900 (has links)
Freie Universiẗat, Diss., 2004--Berlin. / Dateiformat: zip, Dateien im PDF-Format.
8

Mechanisms of Basal Ganglia Development

Lieberman, Ori Jacob January 2020 (has links)
Animals must respond to external cues and changes in internal state by modifying their behavior. The basal ganglia are a collection of subcortical nuclei that contribute to action selection by integrating sensorimotor, limbic and reward information to control motor output. In early life, however, animals display distinct behavioral responses to risk and reward and enhanced vulnerability to neuropsychiatric disease. This arises from the postnatal maturation of brain structures such as the striatum, the main input nucleus of the basal ganglia. Here, using biochemical, electrophysiological and behavioral approaches in transgenic mice, I have explored the molecular and circuit mechanisms that control striatal maturation. In Chapter 1, I begin by reviewing the structure, physiology and function of the basal ganglia, with an emphasis on the striatum. I then describe the existing literature on the development and maturation of striatal neurons and their afferents. In Chapter 2, I review the molecular mechanisms of macroautophagy, a lysosomal degradation pathway that has recently been implicated in the regulation of neurotransmission, including its contribution to neuronal development, neurotransmitter release, and postsynaptic function. The subsequent chapters can be split into two themes. In the first, encompassing chapters 3 and 4, I characterize the postnatal maturation of striatal physiology and define circuit mechanisms that control this process. In Chapter 3, I demonstrate that dopamine (DA) neurotransmission in the striatum initiates the maturation of striatal projection neuron (SPN) intrinsic excitability. I show that DA signaling leads to the maturation of SPN excitability via increased activity of the potassium channel, Kir2. Interestingly, introduction of DA beginning in adulthood could not rescue SPN hyperexcitability while it could during the juvenile period. In Chapter 4, I characterize the maturation of cholinergic interneurons (ChIs) in the striatum and describe the biophysical mechanisms that drive increases in spontaneous activity that occur in ChIs during postnatal development. Finally, I show that the functional maturation of ChIs leads to changes in DA release during the postnatal period. The second theme includes Chapters 5 and 6, in which I explore the role of macroautophagy in striatal function and development. In chapter 5, I used biochemical approaches to show that autophagic flux is suppressed postnatally in the striatum due to increased signaling through the kinase activity of the mammalian target of rapamycin. In Chapter 6, I generated conditional knockouts of Atg7, a required macroautophagy gene, in different populations of SPNs and find that macroautophagy plays cell-type specific roles in SPN physiology. In one subtype of SPNs, macroautophagy regulates intrinsic excitability via degradation of Kir2 channels, which is the first demonstration of macroautophagic control of neuronal excitability. Finally, in Chapter 7, I conclude with a general discussion, where I highlight themes in the molecular and circuit mechanisms of striatal maturation and their implication for neurodevelopmental disease.
9

Macroautophagy Modulates Synaptic Function in the Striatum

Torres, Ciara January 2014 (has links)
The kinase mechanistic target of rapamycin (mTOR) is a regulator of cell growth and survival, protein synthesis-dependent synaptic plasticity, and macroautophagic degradation of cellular components. When active, mTOR induces protein translation and inhibits the protein and organelle degradation process of macroautophagy. Accordingly, when blocking mTOR activity with rapamycin, protein translation is blocked and macroautophagy is induced. In the literature, the effects of rapamycin are usually attributed solely to modulation of protein translation, and not macroautophagy. Nevertheless, mTOR also regulates synaptic plasticity directly through macroautophagy, and neurodegeneration may occur when this process is deficient. Macroautophagy degrades long-lived proteins and organelles via sequestration into autophagic vacuoles, and has been implicated in several human diseases including Alzheimer's, Huntington's and Parkinson's disease. Mice conditionally lacking autophagy-related gene (Atg) 7 function have been exploited to investigate the role of macroautophagy in particular mouse cell populations or entire organs. These studies have revealed that the ability to undergo macroautophagic turnover is required for maintenance of proper neuronal morphology and function. It remained unknown, however, whether it also modulates neurotransmission. We used the Atg7-deficiency model to explore the role of macroautophagy in two sites of the basal ganglia; 1) the dopaminergic neuron, and 2) the direct pathway medium spiny neuron. Briefly, we treated mice with rapamycin, and then examined whether an observed effect was present in control animals, but absent in macroautophagy-deficient lines. We found that rapamycin induces formation of autophagic vacuoles in striatal dopaminergic terminals, and that this is associated with decreased tyrosine hydroxylase (TH)+ axonal profile volumes, synaptic vesicle numbers, and evoked dopamine (DA) release. On the other hand, evoked DA secretion was enhanced and recovery was accelerated in transgenic animals in which the ability to undergo macroautophagy was eliminated in dopaminergic neurons by crossing a mouse line expressing Cre recombinase under the control of the dopamine transporter (DAT) promoter with another in which the Atg7 gene was flanked by loxP sites. Rapamycin failed to decrease evoked DA release or the number of dopaminergic synaptic vesicles per terminal area in the striatum of these mice. Our data demonstrated that mTOR inhibition, specifically through induction of macroautophagy, can rapidly alter presynaptic structure and neurotransmission. We then focused on elucidating the role of macroautophagy in dopaminoceptive neurons, the DA 1 receptor (D1R)-expressing medium spiny neuron. Mice were confirmed to be D1R-specific conditional macroautophagy knockouts as assessed by p62 aggregate accumulation in D1R-rich brain regions (striatum, prefrontal cortex, and the anterior olfactory nuclei), and by analysis of colocalization of Cre recombinase and substance P. Marked age-dependent differences in the presence of p62+ aggregates were noted when comparing the dorsal vs. ventral striatum, and at different ages. We found that the size of striatal postsynaptic densities (PSDs) are modulated by Atg7, as mutant mice have significantly larger PSDs. Surprisingly, we also observed an increase in DAT immunolabel in the dorsal striatum, which suggests that apart from increasing synaptic strength, lack of macroautophagy in postsynaptic neurons could indirectly lead to functional consequences in presynaptic dopaminergic function. Given the newly elucidated role of macroautophagy in modulating a number of pre- and post- synaptic properties, we then explored the potential implications of this process in mediating the effects of synaptic plasticity, specifically to that induced by recreational drugs. An array of studies demonstrates that drugs of abuse induce numerous forms of neuroplasticity in the basal ganglia. Among these changes, rodents that are chronically treated with psychostimulants show increases in dendritic spine density in striatal medium spiny neurons. Little is known about the molecular mechanisms underlying medium spiny neurons gaining more spines in response to psychostimulants. Also, most data, such as involvement of both the D1R and N-methyl-D-aspartic acid (NMDA) receptors, stems from studies using cocaine, and not amphetamine, although a single injection of cocaine has been shown to increase medium spiny neuron spine density, whether acute amphetamine is capable to do so remains to be elucidated. This is an attractive avenue of research to follow given that amphetamines are used recreationally, abused, but unlike cocaine, prescribed for attention deficit hyperactivity disorder and narcolepsy (reviewed in Heal et al., 2013). A myriad of studies has implicated these two proteins in spinogenesis, spine maturation and maintenance, and neuroplasticity. In addition, several studies have demonstrated an association between levels of PSD95 and spine density in various brain regions. Before characterizing the role of mTOR and macroautophagy in psychostimulant-induced plasticity, we examined if an acute injection of amphetamine at multiple doses (1-30 mg/kg) and times of collection after treatment (1-48 hr) influences PSD95 and Homer1b/c in the striatum of wild-type mice by western blotting. We found that amphetamine failed to robustly modify levels of either protein in the striatum. Our data raises several possibilities, including the possibility that unlike cocaine, acute regimens of amphetamine might not regulate spine density in the striatum, and that, it is crucial to examine their effects separately. Finally, this work now provides a starting point to undertake the study of how acute amphetamine affects macroautophagic machinery that regulates molecular, morphological, functional and whole animal behavior.
10

Regulation of the content of met-enkephalin, beta-endorphin and substance P and of the gene expression of their precursors byhaloperidol in the rat striatum and pituitary during aging

劉思文, Lau, See-man. January 1997 (has links)
published_or_final_version / Physiology / Master / Master of Philosophy

Page generated in 0.0662 seconds