• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 5
  • Tagged with
  • 15
  • 15
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Contrôle Quantique et Protection de la Cohérence par effet Zénon, Applications à l'Informatique Quantique

Brion, Etienne 26 November 2004 (has links) (PDF)
Le contrôle quantique constitue un enjeu majeur de la Physique contemporaine. Après un bref tour d'horizon du domaine, nous présentons une méthode, appelée contrôle non holonôme, qui permet d'imposer à système quantique quelconque une évolution unitaire arbitrairement choisie. Dans le contexte de l'Informatique Quantique, cette technique peut être utilisée pour réaliser n'importe quelle porte quantique : à titre d'exemple, nous montrons comment appliquer une porte CNOT à un système de deux atomes de Césium froids en interaction.<br />L'interaction de l'ordinateur avec son environnement risque de compromettre sa fiabilité. Le développement récent de la correction d'erreurs quantiques, inspirée des techniques classiques, suggère néanmoins que ce danger peut être évité. Après une présentation succincte du cadre général de la correction d'erreurs, nous proposons une méthode de protection de l'information fondée sur l'effet Zénon. Cette méthode est ensuite appliquée à un atome de Rubidium.
12

Correction de données de séquençage de troisième génération / Error correction of third-generation sequencing data

Morisse, Pierre 26 September 2019 (has links)
Les objectifs de cette thèse s’inscrivent dans la large problématique du traitement des données issues de séquenceurs à très haut débit, et plus particulièrement des reads longs, issus de séquenceurs de troisième génération.Les aspects abordés dans cette problématiques se concentrent principalement sur la correction des erreurs de séquençage, et sur l’impact de la correction sur la qualité des analyses sous-jacentes, plus particulièrement sur l’assemblage. Dans un premier temps, l’un des objectifs de cette thèse est de permettre d’évaluer et de comparer la qualité de la correction fournie par les différentes méthodes de correction hybride (utilisant des reads courts en complément) et d’auto-correction (se basant uniquement sur l’information contenue dans les reads longs) de l’état de l’art. Une telle évaluation permet d’identifier aisément quelle méthode de correction est la mieux adaptée à un cas donné, notamment en fonction de la complexité du génome étudié, de la profondeur de séquençage, ou du taux d’erreurs des reads. De plus, les développeurs peuvent ainsi identifier les limitations des méthodes existantes, afin de guider leurs travaux et de proposer de nouvelles solutions visant à pallier ces limitations. Un nouvel outil d’évaluation, proposant de nombreuses métriques supplémentaires par rapport au seul outil disponible jusqu’alors, a ainsi été développé. Cet outil, combinant une approche par alignement multiple à une stratégie de segmentation, permet également une réduction considérable du temps nécessaire à l’évaluation. À l’aide de cet outil, un benchmark de l’ensemble des méthodes de correction disponibles est présenté, sur une large variété de jeux de données, de profondeur de séquençage, de taux d’erreurs et de complexité variable, de la bactérie A. baylyi à l’humain. Ce benchmark a notamment permis d’identifier deux importantes limitations des outils existants : les reads affichant des taux d’erreurs supérieurs à 30%, et les reads de longueur supérieure à 50 000 paires de bases. Le deuxième objectif de cette thèse est alors la correction des reads extrêmement bruités. Pour cela, un outil de correction hybride, combinant différentes approches de l’état de l’art, a été développé afin de surmonter les limitations des méthodes existantes. En particulier, cet outil combine une stratégie d’alignement des reads courts sur les reads longs à l’utilisation d’un graphe de de Bruijn, ayant la particularité d’être d’ordre variable. Le graphe est ainsi utilisé afin de relier les reads alignés, et donc de corriger les régions non couvertes des reads longs. Cette méthode permet ainsi de corriger des reads affichant des taux d’erreurs atteignant jusqu’à 44%, tout en permettant un meilleur passage à l’échelle sur de larges génomes et une diminution du temps de traitement, par rapport aux méthodes de l’état de l’art les plus efficaces. Enfin, le troisième objectif de cette thèse est la correction des reads extrêmement longs. Pour cela, un outil utilisant cette fois une approche par auto-correction a été développé, en combinant, de nouveau, différentes méthodologies de l’état de l’art. Plus précisément, une stratégie de calcul des chevauchements entre les reads, puis une double étape de correction, par alignement multiple puis par utilisation de graphes de de Bruijn locaux, sont utilisées ici. Afin de permettre à cette méthode de passer efficacement à l’échelle sur les reads extrêmement longs, la stratégie de segmentation mentionnée précédemment a été généralisée. Cette méthode d’auto-correction permet ainsi de corriger des reads atteignant jusqu’à 340 000 paires de bases, tout en permettant un excellent passage à l’échelle sur des génomes plus complexes, tels que celui de l’humain. / The aims of this thesis are part of the vast problematic of high-throughput sequencing data analysis. More specifically, this thesis deals with long reads from third-generation sequencing technologies. The aspects tackled in this topic mainly focus on error correction, and on its impact on downstream analyses such a de novo assembly. As a first step, one of the objectives of this thesis is to evaluate and compare the quality of the error correction provided by the state-of-the-art tools, whether they employ a hybrid (using complementary short reads) or a self-correction (relying only on the information contained in the long reads sequences) strategy. Such an evaluation allows to easily identify which method is best tailored for a given case, according to the genome complexity, the sequencing depth, or the error rate of the reads. Moreover, developpers can thus identify the limiting factors of the existing methods, in order to guide their work and propose new solutions allowing to overcome these limitations. A new evaluation tool, providing a wide variety of metrics, compared to the only tool previously available, was thus developped. This tool combines a multiple sequence alignment approach and a segmentation strategy, thus allowing to drastically reduce the evaluation runtime. With the help of this tool, we present a benchmark of all the state-of-the-art error correction methods, on various datasets from several organisms, spanning from the A. baylyi bacteria to the human. This benchmark allowed to spot two major limiting factors of the existing tools: the reads displaying error rates above 30%, and the reads reaching more than 50 000 base pairs. The second objective of this thesis is thus the error correction of highly noisy long reads. To this aim, a hybrid error correction tool, combining different strategies from the state-of-the-art, was developped, in order to overcome the limiting factors of existing methods. More precisely, this tool combines a short reads alignmentstrategy to the use of a variable-order de Bruijn graph. This graph is used in order to link the aligned short reads, and thus correct the uncovered regions of the long reads. This method allows to process reads displaying error rates as high as 44%, and scales better to larger genomes, while allowing to reduce the runtime of the error correction, compared to the most efficient state-of-the-art tools.Finally, the third objectif of this thesis is the error correction of extremely long reads. To this aim, aself-correction tool was developed, by combining, once again, different methologies from the state-of-the-art. More precisely, an overlapping strategy, and a two phases error correction process, using multiple sequence alignement and local de Bruijn graphs, are used. In order to allow this method to scale to extremely long reads, the aforementioned segmentation strategy was generalized. This self-correction methods allows to process reads reaching up to 340 000 base pairs, and manages to scale very well to complex organisms such as the human genome.
13

L'impact de la finance de marché sur le comportement d'investissement des entreprises : une confrontation des approches microéconomique et macroéconomique

Guy, Yann 03 July 2012 (has links) (PDF)
La recherche porte sur les liens entre la stratégie de croissance des entreprises non financières et les conditions de son financement en France depuis le début des années 1980. Selon cet objectif, le travail empirique consiste à entreprendre une comparaison entre les phénomènes observés au plan microéconomique sur la base des comptes consolidés des grands groupes cotés, et au plan macroéconomique à partir des données de la comptabilité nationale. La thèse met à jour deux points essentiels. Dans le cadre du régime d'accumulation financiarisé et sous l'impulsion des groupes cotés, l'investissement des entreprises françaises (i) a un caractère dépressif sur le long terme, qui s'accentue nettement en fin de période ; et (ii) est pris dans un cycle financier déflationniste. Nous testons ces évolutions à travers une modélisation VECM sur données de comptabilité nationale et par l'estimateur GMM en première différence sur un panel des groupes cotés au SBF 250. Les équations de comportement estimées sont issues des modèles SFC post-keynésiens.
14

De novo algorithms to identify patterns associated with biological events in de Bruijn graphs built from NGS data / Algorithmes de novo pour l'identification de motifs associés à des événements biologiques dans les graphes de De Bruijn construits à partir de données NGS

Ishi Soares de Lima, Leandro 23 April 2019 (has links)
L'objectif principal de cette thèse est le développement, l'amélioration et l'évaluation de méthodes de traitement de données massives de séquençage, principalement des lectures de séquençage d'ARN courtes et longues, pour éventuellement aider la communauté à répondre à certaines questions biologiques, en particulier dans les contextes de transcriptomique et d'épissage alternatif. Notre objectif initial était de développer des méthodes pour traiter les données d'ARN-seq de deuxième génération à l'aide de graphes de De Bruijn afin de contribuer à la littérature sur l'épissage alternatif, qui a été exploré dans les trois premiers travaux. Le premier article (Chapitre 3, article [77]) a exploré le problème que les répétitions apportent aux assembleurs de transcriptome si elles ne sont pas correctement traitées. Nous avons montré que la sensibilité et la précision de notre assembleur local d'épissage alternatif augmentaient considérablement lorsque les répétitions étaient formellement modélisées. Le second (Chapitre 4, article [11]) montre que l'annotation d'événements d'épissage alternatifs avec une seule approche conduit à rater un grand nombre de candidats, dont beaucoup sont importants. Ainsi, afin d'explorer de manière exhaustive les événements d'épissage alternatifs dans un échantillon, nous préconisons l'utilisation combinée des approches mapping-first et assembly-first. Étant donné que nous avons une énorme quantité de bulles dans les graphes de De Bruijn construits à partir de données réelles d'ARN-seq, qui est impossible à analyser dans la pratique, dans le troisième travail (Chapitre 5, articles [1, 2]), nous avons exploré théoriquement la manière de représenter efficacement et de manière compacte l'espace des bulles via un générateur des bulles. L'exploration et l'analyse des bulles dans le générateur sont réalisables dans la pratique et peuvent être complémentaires aux algorithmes de l'état de l'art qui analysent un sous-ensemble de l'espace des bulles. Les collaborations et les avancées sur la technologie de séquençage nous ont incités à travailler dans d'autres sous-domaines de la bioinformatique, tels que: études d'association à l'échelle des génomes, correction d'erreur et assemblage hybride. Notre quatrième travail (Chapitre 6, article [48]) décrit une méthode efficace pour trouver et interpréter des unitigs fortement associées à un phénotype, en particulier la résistance aux antibiotiques, ce qui rend les études d'association à l'échelle des génomes plus accessibles aux panels bactériens, surtout ceux qui contiennent des bactéries plastiques. Dans notre cinquième travail (Chapitre 7, article [76]), nous évaluons dans quelle mesure les méthodes existantes de correction d'erreur ADN à lecture longue sont capables de corriger les lectures longues d'ARN-seq à taux d'erreur élevé. Nous concluons qu'aucun outil ne surpasse tous les autres pour tous les indicateurs et est le mieux adapté à toutes les situations, et que le choix devrait être guidé par l'analyse en aval. Les lectures longues d'ARN-seq fournissent une nouvelle perspective sur la manière d'analyser les données transcriptomiques, puisqu'elles sont capables de décrire les séquences complètes des ARN messagers, ce qui n'était pas possible avec des lectures courtes dans plusieurs cas, même en utilisant des assembleurs de transcriptome de l'état de l'art. En tant que tel, dans notre dernier travail (Chapitre 8, article [75]), nous explorons une méthode hybride d'assemblage d'épissages alternatifs qui utilise des lectures à la fois courtes et longues afin de répertorier les événements d'épissage alternatifs de manière complète, grâce aux lectures courtes, guidé par le contexte intégral fourni par les lectures longues / The main goal of this thesis is the development, improvement and evaluation of methods to process massively sequenced data, mainly short and long RNA-sequencing reads, to eventually help the community to answer some biological questions, especially in the transcriptomic and alternative splicing contexts. Our initial objective was to develop methods to process second-generation RNA-seq data through de Bruijn graphs to contribute to the literature of alternative splicing, which was explored in the first three works. The first paper (Chapter 3, paper [77]) explored the issue that repeats bring to transcriptome assemblers if not addressed properly. We showed that the sensitivity and the precision of our local alternative splicing assembler increased significantly when repeats were formally modeled. The second (Chapter 4, paper [11]), shows that annotating alternative splicing events with a single approach leads to missing out a large number of candidates, many of which are significant. Thus, to comprehensively explore the alternative splicing events in a sample, we advocate for the combined use of both mapping-first and assembly-first approaches. Given that we have a huge amount of bubbles in de Bruijn graphs built from real RNA-seq data, which are unfeasible to be analysed in practice, in the third work (Chapter 5, papers [1, 2]), we explored theoretically how to efficiently and compactly represent the bubble space through a bubble generator. Exploring and analysing the bubbles in the generator is feasible in practice and can be complementary to state-of-the-art algorithms that analyse a subset of the bubble space. Collaborations and advances on the sequencing technology encouraged us to work in other subareas of bioinformatics, such as: genome-wide association studies, error correction, and hybrid assembly. Our fourth work (Chapter 6, paper [48]) describes an efficient method to find and interpret unitigs highly associated to a phenotype, especially antibiotic resistance, making genome-wide association studies more amenable to bacterial panels, especially plastic ones. In our fifth work (Chapter 7, paper [76]), we evaluate the extent to which existing long-read DNA error correction methods are capable of correcting high-error-rate RNA-seq long reads. We conclude that no tool outperforms all the others across all metrics and is the most suited in all situations, and that the choice should be guided by the downstream analysis. RNA-seq long reads provide a new perspective on how to analyse transcriptomic data, since they are able to describe the full-length sequences of mRNAs, which was not possible with short reads in several cases, even by using state-of-the-art transcriptome assemblers. As such, in our last work (Chapter 8, paper [75]) we explore a hybrid alternative splicing assembly method, which makes use of both short and long reads, in order to list alternative splicing events in a comprehensive manner, thanks to short reads, guided by the full-length context provided by the long reads
15

Les prix à la pompe à Québec réagissent-ils plus rapidement aux hausses qu'aux baisses du coût de l'essence?

Gilbert-Gonthier, Mathieu 19 April 2018 (has links)
Dans plusieurs marchés de l’essence, les prix semblent s’ajuster plus rapidement après des hausses que des baisses des coûts. Cet ajustement asymétrique pourrait entraîner un surcoût pour les automobilistes puisque les prix descendent plus lentement qu’ils le devraient. Plusieurs études ont été réalisées sur le sujet et la plupart indiquent la présence du phénomène. Au Québec, les rares études ont toutefois apporté des résultats mitigés. Ce mémoire vise à tester la présence d’ajustement asymétrique du prix de l’essence à Québec. Nous estimons trois modèles à correction d’erreur et deux d’entre eux indiquent la présence d’asymétrie. En particulier, nous trouvons que l’asymétrie s’observe en fonction de la marge bénéficiaire des essenceries et non du signe des variations des coûts, contrairement à ce que confirment plusieurs études. Plus précisément, le prix semble s’ajuster plus rapidement lorsque la marge est basse. Toutefois, nous estimons que l’asymétrie engendre un surcoût minime pour les automobilistes.

Page generated in 0.1106 seconds