401 |
Filmes de silicona constituidos de unidades D,T e Q de silicio : obtenção, caracterização e avaliação de algumas propriedades / D. T. and Q. silicone films : synthesis, characterization and properties evaluationDeangelo, Cristina Alves 13 December 2004 (has links)
Orientador: Inez Valeria Pagotto Yoshida / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Quimica / Made available in DSpace on 2018-08-04T16:15:53Z (GMT). No. of bitstreams: 1
Deangelo_CristinaAlves_M.pdf: 4120321 bytes, checksum: 89116fad862ad14079299ec810b0b04b (MD5)
Previous issue date: 2004 / Mestrado / Quimica Inorganica / Mestre em Química
|
402 |
The strength of type 3CR12 corrosion resisting steel build-up I-sections columnsBredenkamp, Paul Jacques 16 April 2014 (has links)
M.Ing. (Civil Engineering) / Please refer to full text to view abstract
|
403 |
The mobilisation of polycyclic aromatic hydrocarbons from the coal tar lining of water pipesMaier, Matthias January 1998 (has links)
Coal-tar was commonly used as an internal lining for corrosion protection of water pipes from the 19th century up to the present. It is reported that these coatings can lead to elevated concentrations of Polycyclic Aromatic Hydrocarbons (PAHs) in the distributed drinking water. The aim of the project was to investigate the processes and mechanisms responsible for the occurrence of these substances in drinking water distribution systems. The results presented in this project showed that the occurrence of PAHs in a distribution system was linked to the presence of the disinfectants chlorine and chlorine dioxide. This dependence could be shown in the laboratory, in a pilot-scale pipe rig as well as in field investigations in a real distribution system. Generally, hostile environmental conditions for microbiological activity such as stagnation periods and anaerobic conditions could be identified as the most important factors to favour the occurrence of PAHs in the drinking water. It was clearly shown that disturbances in the hydraulic regime such as water hammers, operation of valves and rapid increases in flow velocity can result in enhanced PAH concentrations. Immediately after stagnation periods PAH concentrations increased to levels which exceeded the prescribed concentrations of the EC-guideline of 200 ng/l. In laboratory experiments it was demonstrated that the coal-tar is a substrate for the growth of biofilms. Batch experiments and reactor experiments showed that the removal of biofilm resulted in a higher leaching rate of the PAHs into the water. Experiments concerning the potential for the formation of chlorinated PAHs as disinfection by-products from the PAHs prevalent in water distributed through coal-tar lined pipes showed that their occurrence is very unlikely under conditions prevalent in water distribution systems. A theory is presented which indicates that particles adhering to the pipe walls which can be sometimes embedded in the biofilm matrix represent a major factor in the process of the mobilisation of PAHs. The destabilisation of the biofilm matrix by hostile environmental conditions (disinfectants, aerobic conditions, oxygen limitation during stagnation periods) or enhanced shear forces on the biofilm, results in the release of particles highly contaminated with PAHs.
|
404 |
Effects of metallurgical variables on the cavitation erosion behaviour of wrought austenitic stainless steelWang, Kai Yuan January 2017 (has links)
University of Macau / Faculty of Science and Technology / Department of Electromechanical Engineering
|
405 |
Effects of metallurgical variables on the cavitation erosion behaviour of AISI 304 austenitic stainless steelLi, Jing Hui, January 2017 (has links)
University of Macau / Faculty of Science and Technology / Department of Electromechanical Engineering
|
406 |
Laser surface modification of HVOF coatings for improvement of corrosion and wear performanceRakhes, Mohsen Mohamed January 2013 (has links)
Metal Matrix Composite (MMC) coatings, comprised of a hard ceramic phase embedded in a metallic matrix, are increasingly being applied for many industrial applications to provide cost effective protection against wear and corrosion. Such coatings are commonly produced by thermal spray. Although the most advanced thermal spray techniques, such as high-velocity oxy-fuel (HVOF), produce MMC coatings with total porosity levels lower than 1%, due to the nature of thermal spray MMC coatings, corrosion still takes place. The corrosion processes are dominated by the complex microgalvanic and interfacial mechanisms, as well as by porosity, due to the existence of various defects in HVOF MMC coatings. As a result, HVOF coatings do not ultimately meet the requirements in certain service conditions in operating environments. Therefore, there is a need to find a method of modification of coatings, with significantly reduced microstructural defects and improved cohesive and adhesive strength so that the service life of the coated components can be increased. This work aims to investigate the effects of laser surface treatment on the corrosion and wear performance for Tribaloy 800 (T800), and T800-based WC HVOF-sprayed MMC coatings onto 316L stainless steel substrate. Laser surface treatments have been carried out using a 1.5 kW high power diode laser. Laser operating windows for various coatings have been established for the relationships between the laser operating conditions and melt pool dimensions, in the consideration of formation of cracks and porosity within laser-treated surface layers. Microstructural analysis of the powders, and various coatings before and after laser treatments has been conducted by means of optical and SEM (with EDX) microscopy, electron probe micro-analysis (EPMA), white-light interferometery, and X-ray diffraction, to characterise morphology, chemical composition and phase. Corrosion performance of various coating was evaluated using immersion testing in 3 M H2SO4 at pH ~ 1.27 at room temperature for different periods of time (including 24, 48, 72, 96 and 168 hours), followed by Inductivity Coupled Plasma-optical emission spectrometer (ICP-OES) technique, potentiodynamic polarisation in 0.5 M H2SO4, and electrochemical impedance spectroscopy studies in 0.5 M H2SO4 solution after 1, 3, 6, 12, 24, and 48 hours. Inaddition, dry sliding wear behaviour measured by pin-on-disk and microhardness test of various coatings before and after laser treatment were evaluated.The results indicated that it was possible to achieve full control of melt depth and the degree of melting, particularly full or partial melting of WC particles by proper selection of the laser processing parameters while preventing dilution. Significant improvement of corrosion and wear resistance has been achieved after laser treatment as a result of the elimination of discrete splat-structure, removal of microcrevices and porosity, as well as the reduction of microgalvanic driving force between the WC and the metal matrix by formation of new phases at the interfaces. The degree of melting of WC particles controls the corrosion properties of the laser-treated HVOF coatings. Moreover, the results also suggested that partial melting of WC had positive effect on wear resistance of the coatings.
|
407 |
Measurement of stress potentialsMiniato, Oswald Karl January 1947 (has links)
No abstract / Applied Science, Faculty of / Chemical and Biological Engineering, Department of / Graduate
|
408 |
Comportement en CSC en milieu primaire REP de feuillards en alliage 718 : étude des causes physico-chimiques de la désensibilisation par traitement thermique / SCC behavior in PWR environment of alloy 718 components : study of desensitization to SCC by heat treatmentGalliano, Florian 16 October 2015 (has links)
L’utilisation de différents alliages à base nickel est largement répandue dans les domaines industriels où les sollicitations mécaniques ou environnementales sont particulièrement sévères. Dans le cas des applications nucléaires, ceux-ci sont utilisés pour leur excellente résistance aux phénomènes de Corrosion Généralisée et de Corrosion Sous Contrainte. Les présents travaux s’intéressent tout particulièrement à la nuance 718 utilisée pour faire les composants fortement sollicités (ressorts, vis, …) présents au sein des assemblages combustibles. Ce sont ainsi plus de 20 millions de pièces qui sont actuellement en service dans les réacteurs français. Les enjeux industriels de sûreté des composants conduisent à des recherches permanentes en vue d’accroître encore davantage leur fiabilité. Des travaux sont ainsi menés depuis plus de quinze ans en étroite collaboration entre Areva et le Cirimat, dans cet objectif. Ces travaux ont en particulier permis la découverte d’un traitement thermique permettant de désensibiliser totalement l’alliage 718 vis à vis des phénomènes d’endommagement assisté par l’environnement. Ce phénomène a été associé à une évolution tant de l’état métallurgique que de la chimie du matériau. Les travaux présentés dans ce manuscrit s’inscrivent dans la droite lignée de ceux entrepris précédemment. Les paramètres clefs du procédé développé alors ont été identifiés afin d’être reproduits. Des premiers essais conduits en laboratoire ont permis de mettre en évidence une diminution de la sensibilité à la fissuration assistée par l’environnement des matériaux ainsi traités. L’efficacité se révèle néanmoins partielle dans ces conditions. Des essais menés en parallèle dans une enceinte industrielle ont permis d’aboutir à des résultats similaires. Ces résultats se révèlent partiellement satisfaisant au regard de ceux obtenus dans les études précédentes. Aucune différence entre l’état métallurgique des matériaux obtenus dans le cadre de cette étude et ceux issus des travaux antérieurs n’a pu être mise en évidence. En revanche, une différence peut être constatée dans l’évolution de la chimie du matériau, notamment concernant la teneur en éléments interstitiels. Une analyse approfondie des atmosphères de traitement thermique a donc été entreprise afin d’identifier les mécanismes entrant en jeu dans le procédé de désensibilisation et permettant de conduire à une diminution de la teneur en élément interstitiel, en particulier le carbone. Il est ainsi apparu qu’une réaction directe entre l’atmosphère et les éléments interstitiels mis en jeu ne peut avoir lieu. D’autres mécanismes ont alors été explorés afin de conduire à une décarburation de l’alliage 718. Il a alors été mis en évidence que plusieurs alliages modèles Ni-Cr et Ni-Cr-Fe pouvaient être décarburés dans des conditions compatibles avec celles du traitement thermique de désensibilisation, alors qu’aucun échantillon issu du matériau d’étude ne conduit à un résultat similaire. Ceci a été attribué au fait que la majeure partie du carbone contenu dans ce matériau se présente sous la forme de carbures de niobium ou de titane. Cette solution, trop difficile et incertaine à développer d’un point de vue industriel n’a pas été poursuivie. Une voie alternative au traitement thermique seul a été également initiée afin d’atteindre l’objectif industriel initial : réduire fortement la sensibilité de l’alliage 718 à la fissuration assistée par l’environnement. Celle-ci consiste en une adaptation de la gamme thermomécanique de fabrication des produits d’études. Des résultats prometteurs sont présentés dans ce manuscrit mais doivent nécessairement être étoffés avant de pouvoir envisager sereinement une mise en application industrielle de ce procédé alternatif. / Ni-based alloys are widely used in various industrial environments when high mechanical properties and high resistance to uniform corrosion and stress corrosion cracking are required. The present work deals with components made of alloy 718 that are used in fuel assemblies of Pressurized Water Reactors (springs, bolds, screws, …). These are highly solicited and there are more than 20 million in services in core of PWR power plant in France, at present time. A major concern for nuclear industry on based on safety during operations and permanent research works are carried out in order to improve reliability of these components. For more than fifteen years, Areva and Cirimat have performed various studies to complete this goal. Few years ago, this collaboration was successful with the discovery of a particular heat treatment process that allows the desensitization of alloy 718 to environment assisted cracking. This phenomenon was associated to an evolution of both metallurgical state and material chemistry. Results presented in this document are the right continuation of this previous work. Key process parameters have been identified thanks to previous results in order to be reproduced. Experiments were conducted in laboratory equipment, at a first time. They revealed a slight decrease of material susceptibility to environment assisted cracking. Nevertheless, process efficiency appears not as satisfying as observed in previous results. Other tests have been conducted at the same time in an industrial facility and reveal similar results. Atmosphere analyses have been carried out in both laboratory and industrial equipment in order to identify desensitization mechanism, particularly the decrease in carbon content. It appears that a direct reaction between atmosphere and interstitial elements could not be considered as a slight surface oxidation may appear during heat treatment cycle. Other decarburization mechanisms have been explored using both alloy 718 and other Ni-Cr(-Fe) model materials. Decarburizing conditions have been determined on all model materials. Nevertheless, none of them allow the decarburization of studied alloy 718. This was attributed to the fact that most of the carbon in this alloys is precipitated under niobium and titanium carbides. This solution could have been continued but appeared too difficult and highly uncertain regarding industrial scale application. An alternative processing to a sole heat treatment was initiated to reach our main goal: significantly decrease susceptibility of alloy 718 to environment assisted cracking. It is based on an optimization of thermomechanical process route. Some promising results are presented in this document. They must be developed before considering an application to an industrial scale.
|
409 |
Crack Injection as a Mechanism for Stress Corrosion CrackingJanuary 2020 (has links)
abstract: Traditionally nanoporous gold is created by selective dissolution of silver or copper from a binary silver-gold or copper-gold alloy. These alloys serve as prototypical model systems for a phenomenon referred to as stress-corrosion cracking. Stress-corrosion cracking is the brittle failure of a normally ductile material occurring in a corrosive environment under a tensile stress. Silver-gold can experience this type of brittle fracture for a range of compositions. The corrosion process in this alloy results in a bicontinuous nanoscale morphology composed of gold-rich ligaments and voids often referred to as nanoporous gold. Experiments have shown that monolithic nanoporous gold can sustain high speed cracks which can then be injected into parent-phase alloy. This work compares nanoporous gold created from ordered and disordered copper-gold using digital image analysis and electron backscatter diffraction. Nanoporous gold from both disordered copper-gold and silver-gold, and ordered copper-gold show that grain orientation and shape remain largely unchanged by the dealloying process. Comparing the morphology of the nanoporous gold from ordered and disordered copper-gold with digital image analysis, minimal differences are found between the two and it is concluded that they are not statistically significant. This reveals the robust nature of nanoporous gold morphology against small variations in surface diffusion and parent-phase crystal structure.
Then the corrosion penetration down the grain boundary is compared to the depth of crack injections in polycrystal silver-gold. Based on statistical comparison, the crack-injections penetrate into the parent-phase grain boundary beyond the corrosion-induced porosity. To compare crack injections to stress-corrosion cracking, single crystal silver-gold samples are employed. Due to the cleavage-like nature of the fracture surfaces, electron backscatter diffraction is possible and employed to compare the crystallography of stress-corrosion crack surfaces and crack-injection surfaces. From the crystallographic similarities of these fracture surfaces, it is concluded that stress-corrosion can occur via a series of crack-injection events. This relationship between crack injections and stress corrosion cracking is further examined using electrochemical data from polycrystal silver-gold samples during stress-corrosion cracking. The results support the idea that crack injection is a mechanism for stress-corrosion cracking. / Dissertation/Thesis / Doctoral Dissertation Materials Science and Engineering 2020
|
410 |
Progresivní bednící systém s protikorozní ochrannou funkcí / Progressive cladding system with corrosion protection functionMarek, Martin January 2020 (has links)
Corrosion of reinforcement in reinforced concrete is a huge problem. Corrosion of reinforcement has a great effect on the service life of reinforced concrete structures. The subject of this work is to verify the inhibitors properties and their efficiency using physical and electrochemical methods. The aim of this work is the design of formwork panels with corrosion protection. The formwork panels are on different material basis. Corrosion protection is ensured by the use of migration corrosion inhibitors.
|
Page generated in 0.0585 seconds