441 |
Technological aspects of corrosion control of metals / Enjeux technologique de la protection contre la corrosionTaylor, Matthew 06 November 2012 (has links)
La prévention contre la corrosion est un facteur déterminant pour la durabilité des matériaux. Historiquement, le développement des applications des matériaux avancés n'est pas envisageable sans une approche scientifique poussée des mécanismes fondamentaux qui conduisent à la dégradation en service. L'histoire humaine a été ponctuée par les progrès technologiques, qui ont tous été permis par les progrès de la science des matériaux, de l'âge du fer à l'âge de silicium. Par exemple, c'est la fusion du minerai qui a fait basculer l'humanité de l'âge de pierre aux premiers alliages (bronze) et la fondation ultérieure d'une société basée sur les métaux. Ces métaux retournent à l'état naturel en suivant des lois thermodynamiques et cinétiques. l'objet de la thèse vise à comprendre le comportement de certains matériaux dits passivables pour tenter de proposer des lois de comportement à partir du modèle du défaut ponctuel. Cette approche s'appuie sur des caractérisations électrochimique et physico-chimique des matériaux métalliques considérés. / Corrosion control is an important facet of durable and responsible engineering. Historically, the development of advanced materials applications stymied without sufficient scientific understanding of the fundamental mechanisms that dominate degradation in the system of application. Human history has been punctuated by advances in technology, all of which were enabled by advances in materials science, from the iron age to the silicon age. For instance, it was the invention of smelting ores that brought humanity out of the stone age, leading to the first alloys (bronze) and the subsequent foundation of a metals based society. During the infancy of the planet earth, around four billion years ago, the first photosynthesizers began converting carbon dioxide into oxygen. However, oxygen gas was not released into the atmosphere in great quantities because it was immediately bound up with dissolved metals in the ocean; mostly iron, forming a large fraction of the iron ores we rely upon. Producing such metals from oxides formed during the previous four billion years involves flying in the face of the thermodynamic desire to return to the oxide state.
|
442 |
A study on the mechanism of stress corrosion cracking of duplex stainless steel in hot alkaline-sulfide solutionChasse, Kevin Robert 05 1900 (has links)
Corrosion and stress corrosion cracking of structural components cost an estimated $300 billion annually in the United States alone and are a safety concern for a number of industries using hot alkaline environments. These process environments may contain different amounts of sulfide and chloride; however, the combined role of these ions on the stress corrosion cracking of duplex stainless steels, which are widely used because of their generally reliable performance, had never been studied. This study shows that chlorides in sulfide-containing caustic environments actually have a significant influence on the performance of these alloys. A mechanism for stress corrosion cracking of duplex stainless steels in hot alkaline environments in the presence of sulfide and/or chloride was proposed. Microstructural and environmental aspects were studied using mechanical, electrochemical, and film characterization techniques. The results showed that selective corrosion of the austenite phase depended on percent sulfidity, alkalinity, and chloride content. Chlorides enhanced crack initiation and coalescence along the austenite/ferrite phase boundaries. Unstable passivity of duplex stainless steels in hot alkaline-sulfide environments was due to anion adsorption on the surface leading to defective film formation. Chlorides and sulfide available at the electrolyte/film surface reduced the charge transfer resistance and shifted the response of the films to lower frequencies indicating the films became more defective. The surface films consisted of an outer, discontinuous layer, and an inner, barrier layer. Fe, Mo, and Mn were selectively dissolved in alkaline and alkaline-sulfide environments. The onset of stress corrosion cracking was related to the extent of selective dissolution and was consistent with a film breakdown and repair mechanism similar to slip-step dissolution. Recommendations for reducing the susceptibility of duplex stainless steels to stress corrosion cracking in sulfide-containing caustic environments include reducing the chloride to hydroxide ratio and alloying with less Mo and Mn. The results will impact the petrochemical, pulp and paper, and other process industries as new duplex grades can be developed with optimal compositions and environments can be controlled to extend equipment life.
|
443 |
Cyclic stress effect on stress corrosion cracking of duplex stainless steel in chloride and caustic solutionsYang, Di 01 November 2011 (has links)
Duplex stainless steel (DSS) is a dual-phase material with approximately equal volume amount of austenite and ferrite. It has both great mechanical properties (good ductility and high tensile/fatigue strength) and excellent corrosion resistance due to the mixture of the two phases.
Cyclic loadings with high stress level and low frequency are experienced by many structures. However, the existing study on corrosion fatigue (CF) study of various metallic materials has mainly concentrated on relatively high frequency range. No systematic study has been done to understand the ultra-low frequency (10-5 Hz) cyclic loading effect on stress corrosion cracking (SCC) of DSSs.
In this study, the ultra-low frequency cyclic loading effect on SCC of DSS 2205 was studied in acidified sodium chloride and caustic white liquor (WL) solutions. The research work focused on the environmental effect on SCC of DSS 2205, the cyclic stress effect on strain accumulation behavior of DSS 2205, and the combined environmental and cyclic stress effect on the stress corrosion crack initiation of DSS 2205 in the above environments.
Potentiodynamic polarization tests were performed to investigate the electrochemical behavior of DSS 2205 in acidic NaCl solution. Series of slow strain rate tests (SSRTs) at different applied potential values were conducted to reveal the optimum applied potential value for SCC to happen. Room temperature static and cyclic creep tests were performed in air to illustrate the strain accumulation effect of cyclic stresses. Test results showed that cyclic loading could enhance strain accumulation in DSS 2205 compared to static loading. Moreover, the strain accumulation behavior of DSS 2205 was found to be controlled by the two phases of DSS 2205 with different crystal structures. The B.C.C. ferrite phase enhanced strain accumulation due to extensive cross-slips of the dislocations, whereas the F.C.C. austenite phase resisted strain accumulation due to cyclic strain hardening. Cyclic SSRTs were performed under the conditions that SCC occurs in sodium chloride and WL solutions. Test results show that cyclic stress facilitated crack initiations in DSS 2205. Stress corrosion cracks initiated from the intermetallic precipitates in acidic chloride environment, and the cracks initiated from austenite phase in WL environment. Cold-working has been found to retard the crack initiations induced by cyclic stresses.
|
444 |
Evaluation of inorganic corrosion inhibition of mild steel and Aluminium alloy in acidic environment.Sanni, Omotayo. January 2013 (has links)
M. Tech. Chemical Engineering. / Discusses the effect of ferrous gluconate (FG) and zinc gluconate (ZG) as novel corrosion inhibitors on the corrosion rate of mild steel and aluminium alloy in 3.5% NaCl and 0.5 M H2SO4 media was investigated by electrochemical and weight loss techniques. The effect of inhibitor concentration was investigated. The concentration of these inhibitor ranges from 0.5 to 2.0% g/v at a temperature of 28OC. The synergetic effect of these inhibitors was also studied. High resolution scanning electron microscopy equipped with energy dispersive spectroscopy (HR-SEM/EDS) and Raman spectroscopy was used to characterize the surface morphology of the metals before and after corrosion. Experimental results revealed that ferrous gluconate and zinc gluconate in 3.5% NaCl and 0.5 M H2SO4 solution decreased the corrosion rate at the different concentrations studied. Maximum inhibition efficiency of 100% was achieved for mild steel at 0.5% g/v concentration of FG, 0.5% g/v concentration of ZG and 1.5% g/v synergetic of FG + ZG in 3.5% NaCl solution. Similarly, 100% inhibition efficiency was obtained for aluminium alloy at different media studied (3.5% NaCl and 0.5 M H2SO4). The experimental results obtained from potentiodynamic polarization method showed that the presence of FG and ZG in 3.5% NaCl and 0.5 M H2SO4 solutions decreases the corrosion current densities (icorr) and corrosion rates (CR), and increases the polarization resistance (Rp). It was observed that the inhibitor efficiency depends on the corrosive media, concentration of the inhibitor and the substrate material. The adsorption characteristics of FG and ZG were best described by the Langmuir and Freundlich isotherms. Good correlation exists between the results obtained from both polarization and weight loss methods.
|
445 |
Role of synergy between wear and corrosion in degradation of materialsAzzi, Marwan. January 2008 (has links)
Tribocorrosion is a term used to describe the material degradation due to the combination of electrochemical and tribological processes. Due to a synergetic effect, the material loss can be larger than the sum of the losses due to wear and corrosion acting separately. In this thesis, the synergy of wear and corrosion was investigated for different types of material, namely the Ti-6Al-4V alloy, the SS316L stainless steel coated with a thin film of Diamond Like Carbon (DLC), and the SS301 stainless steel coated with a thin film of chromium silicon nitride (CrSiN). / A tribocorrosion apparatus was designed and constructed to conduct wear experiments in corrosive media. Sliding ball-on-plate configuration was used in this design, where the contact between the ball and the specimen is totally immersed in the test electrolyte. The specimen was connected to a potentiostat to control its electrochemical parameters, namely the potential and the current. Electrochemical techniques were used to control the kinetics of corrosion reactions, and therefore it was possible to assess separately the role of corrosion and wear in the total degradation of material, and to evaluate the synergy between them. / For Ti-6Al-4V, it was found that the corrosion and tribocorrosion depend strongly on the structure of the material. The alpha-equiaxed microstructure with fine dispersed beta-phase exhibited the best corrosion resistance. The corrosion resistance was found to decrease when the basal plane was preferentially aligned parallel to the surface, which is attributed to a low resistance to charge transfer in the oxide films formed on this plane. On the other hand, when wear and corrosion were involved simultaneously, the oxide layer protecting the substrate against dissolution was mechanically destroyed leading to a high corrosion rate. It was found that the hardness was the most important factor determining the tribocorrosion behavior of the Ti-6Al-4V alloy; samples with high hardness exhibited less mechanical wear, less wear-enhanced corrosion, and less corrosion-enhanced wear. / For DLC coatings, it was found that interface engineering plays a crucial role in the tribocorrosion behavior of DLC films. DLC films with nitrided interface layer (SS\N3h\DLC) were shown to have very poor tribocorrosion resistance; the DLC film delaminated from the substrate after 50 cycles of sliding wear at 9 N load in Ringer's solution. It should be mentioned that a previous study performed at Ecole Polytechnique de Montreal [4] has shown that the same coating resisted 1800 cycles of dry wear at 22 N without delamination. This demonstrates clearly the effect of corrosion on the wear resistance of DLC films. The use of a-SiN:H bond layer between the SS316L substrate and the DLC film improved significantly the tribocorrosion behavior of the coating. This layer acts as a barrier against corrosion reaction; the polarization resistance was 5.76 GO.cm2 compared to 27.5 MO.cm2 and 1.81 MO.cm2 for the DLC-coated SS316L with nitrided interface layer and the bare substrate, respectively. / For CrSiN coatings, it was also shown that nitriding treatment of the substrate prior to deposition reduces significantly the tribocorosion resistance of the CrSiN-coated SS301 substrates. This is attributed to the peculiar morphology of the nitrided surface prior to deposition. The high relives at the grain boundaries of the substrate may be the reason for the generation, during sliding wear, of defects in the film, which makes the infiltration of the liquid easier, and consequently leads to the destruction of the CrSiN film.
|
446 |
The Studies of Thiosulfate and Lead-induced Stress Corrosion Cracking of Alloy 800Yu, Liang Unknown Date
No description available.
|
447 |
Microbiologically influenced corrosion of steel coupons in stimulated systems : effects of additional nitrate sources.Pillay, Charlene. 25 November 2013 (has links)
Microbiologically Influenced Corrosion (MIC) is a process influenced by microbial presence and their metabolic activities. This study examined the microbial effects on metal corrosion under different environmental conditions with nutrient supplements. Experiments were conducted by inserting stainless steel 304 and mild steel coupons (2.5 x 2.5 cm²) into loam soil and a simulated seawater/sediment system with various nutrient conditions (sterilized, without supplement, 5 mM NaNO₃ or NH₄NO₃). Two mild and stainless steel coupons were removed monthly and the corrosion rate was evaluated based on the weight loss. Bacterial populations were enumerated using the most probable number (MPN) technique. The presence and adhesion of microbes on mild steel coupons were examined using Scanning Electron Microscopy (SEM). The extent of the corrosion process on the surface of the metal coupons were visualized by using the Stereo Microscope. The elemental composition of the corrosion products formed on the coupon surface were determined by Energy Dispersive X-Ray analyses. Isolation and identification of aerobic microorganisms were conducted and examined for its potential in either accelerating or inhibiting corrosion. The bacterial populations present on the mild steel surface were analyzed by fluorescent in situ hybridization. Denaturing gradient gel electrophoresis (DGGE) analyses of PCR-amplified 16S rDNA fragments were conducted to determine the microbial community complexity of the biofilm. Greater weight losses of mild steel in loam soil and the seawater/sediment system with NaNO₃ (48.86 mg/g and 19.96 mg/g of weight loss, respectively after 20 weeks) were observed with total heterotrophic bacterial population presented (106.695 MPN/ml and 0.11187 MPN/ml respectively) compared to the autoclaved control (7.17845 mg/g and 0.12082 mg/g of weight loss respectively). Supplementation of 5 mM NH₄NO₃ increased the total heterotrophic bacterial population and resulted in a decrease in weight loss measurements on the stainless steel coupons (211.4 MPN/ml with a 0.01 mg/g weight loss) after 20 weeks compared to the non-autoclaved loam soil and loam soil supplemented with NaNO₃ (139.2 MPN/ml and 134.9 MPN/ml respectively with no weight loss). SEM images of the mild steel coupons confirmed the presence and adherence of bacteria on the metal surface. Stereo microscopic images displayed reddish-brown deposits and pitting on the coupon surface. Isolation, identification and sequence analysis revealed that most microorganisms were the Bacillus species. This group of microorganisms are iron-oxidizing bacteria that could also promote the corrosion process. After 20 weeks of incubation, the total SRB cell counts were lower in samples supplemented with NaNO₃ in both loam soil and the seawater/sediment system. This study also indicated that the isolated aerobic microorganisms do play a role in the corrosion process in both stainless and mild steel. DGGE analysis revealed microbial diversity in the corrosion products especially those affiliated to the bacterial phyla Firmicutes and Gamma-Proteobacteria. Fluorescent in situ hybridization analysis allowed for an overall estimation of Eubacteria and sulphate-reducing bacteria present in the biofilm formed on the surface of mild steel. The current study indicates that the addition of nitrates did not significantly reduce the rates of corrosion of both mild and stainless steel. However, it does seem that environmental conditions did pose as an important factor in the corrosion process. Therefore, further studies need to be implemented to analyze the environmental type, microbial composition and optimization of the concentration of nitrates for possible mitigation of metal corrosion. To optimize MIC prevention and control, collaboration between engineers and microbiologists proves advantageous to develop an environmentally sound and potentially cost-effective approach to control corrosion. / Thesis (Ph.D.)-University of KwaZulu-Natal, Westville, 2012.
|
448 |
Neural networks : an application to electrochemical noise dataPowers, John W. January 1997 (has links)
Neural networks were applied to the analysis of electrochemical noise data. Electrochemical noise is defined as the fluctuations in either current or potential with time for a metal which is immersed in a conductive solution. This data is of interest because of its relationship to particular corrosion processes. Specifically, a system which is experiencing uniform corrosion will produce a different noise signal than one which is experiencing localized (perforation) corrosion. The economic effects of corrosion are significant and methods which improve the ability to detect, measure and predict corrosion would be extremely valuable.Two series of experiments were conducted. The data for both series were collected from aluminum samples immersed in various aqueous solutions. The series differed from each other in the configuration and programming of the potentiostat which collected the data. The first series only dealt with potential noise while the second series dealt with both potential and current noise. Auxiliary parameters, such as the pH and chloride concentration of the solutions were used in the second series. The first series studied data from only two solutions, while the second series included six solutions.It was possible for neural networks to correctly categorize systems in Series 1 according to the class of corrosion being observed (uniform or perforating). Appropriate data transformation steps were required to effect these classifications and it was also observed that many of these data transformations would lead directly to categorization without the use of a neural network.The additional data collected in Series 2 allowed a more complex analysis. Neural networks were able to simultaneously predict both the propensity towards localized corrosion and the metal dissolution rate. This application demonstrated the power of neural networks.Several types of neural networks and learning algorithms were included in this study. The two systems used most were a backpropagation (multi-layer perceptron) and a radial basis system. Comparisons of the various network systems with regard to speed and accuracy were made. / Department of Mathematical Sciences
|
449 |
STRESS CORROSION CRACKING OF REBAR ROOF BOLTS IN U.S. UNDERGROUND COAL MINES - A PRELIMINARY STUDYBylapudi, Gopi 01 December 2014 (has links)
According to the National Institute of Occupational Safety and Health (NIOSH), about 100 million rock anchors were installed in the USA mining industry during 1999 (Dolinar, 2000). The rock bolt usage in US coal mining industry fell from 85 million in the year 1988 to 68 million by 2005 (Tadolini, 2006), and is assumed to be close to that number of rock anchors consumed currently since, the tonnage from underground is almost the same. Most underground coal mines have conditions such as moisture in the atmosphere, ground water with different chemical contents that are conducive for corrosion of rock anchors and ancillaries (such as plates), and the effects of this on the performance of the anchors had been researched in the US to an extent from the past research at Southern Illinois University Carbondale (SIUC). In addition to the general corrosion like pitting and crevice, stress corrosion adds to the process a potentially serious threat and results in material failure underground due to stress corrosion cracking (SCC) yet the effects are not fully understood in the USA. The results of this research therefore will have a positive and direct effect on rock related safety. During this research project in situ specific tests were conducted with bolts to try and determine the corrosion potential in a specific coal-mining region. The coal mining areas were divided into three regions and were named as East, Mid-West and West respectively. To enhance the value/importance of the field data collected from the mines, a metal mine and a salt mine (two non-coal mines) were included in the plan and the data analysis proved that the methodology developed for determining the corrosion potential underground is applicable to any underground mines. The Insitu studies include water samples collection and analysis and open circuit potential (OCP/Eoc) testing and analysis. Open Circuit Potential (OCP) data were recorded to estimate probability of active corrosion. Hypothetically, probability of active corrosion is lower if the actual OCP of roof bolts in the mine is less than the characteristic OCP of the steel grade, and vice versa. The effects of certain factors such as the roof condition, reference distance (distance between bolt and reference electrode) on the open circuit potential data during the measurements were studied to ensure its impact on the corrosion potential determination technique developed. The findings from this research helps standardize the corrosion potential determination methodology. The preliminary study of stress corrosion cracking of the subject test sample (Grade 60 rebar roof bolt) was conducted in this research work. The experimental study invloves testing a complete roof bolt in the mine simulated environment. The mine simulated environment in the test cell consists of the roof strata material collected from the mine site with continuous flow of water at slower and varaible flow rate (0 to 3 ml/minute) with pH in the range of 7.5 to 9.0. The results showed that stress corrosion could be very serious problem when it comes to long term mining applications. The stress corrosion test cell developed and tested was proved to be significant in conducting the long term stress corrosion tests. The strength results of the Grade 60 rebar roof bolt tested had a significant strength loss after 3 months of testing in the stress corrosion cell. Hence, more SCC studies are deemed necessary to evaluate the seriousness of the problem and if possible eliminate it.
|
450 |
Modélisation de la corrosion des alliages de zirconium par l'eau : application aux éléments de combustible nucléaire / Modelling the corrosion of zirconium alloys in water : application to nuclear fuel elementsButtin, Paul 31 August 2011 (has links)
La « shadow corrosion » est un phénomène observé sur les gaines en alliages de zirconium des assemblages de combustibles dans les réacteurs nucléaires. Il consiste en l'augmentation de la corrosion sur les zones de la gaine qui sont à proximité d'autres parties de l'assemblage en Inconel. Afin d'améliorer la compréhension de ses mécanismes, des modèles numériques sont développés suivant deux axes d'études. Un premier modèle de couplage galvanique a pour but de dégager les facteurs de premier ordre. Les résultats des simulations montrent que l'intensité du courant anodique, et sa dépendance en potentiel, contrôlent le caractère local (effet d'ombre) de ce phénomène. D'autre part, cet effet nécessitant un courant cathodique assez élevé révèle l'importance du pouvoir oxydant de l'électrolyte. Un deuxième modèle d'oxydation du zirconium est développé en intégrant le transport multi particules dans l'oxyde. Ce modèle, couplé aux effets d'interfaces (métal/oxyde et oxyde/électrolyte), permet de démontrer le rôle crucial de la polarisation et de l'hydrogène provenant de la dissociation de l'eau sur les cinétiques d'oxydation. A partir de ces modèles, un scénario explicatif de la shadow corrosion est élaboré suggérant l'importance de la radiolyse de l'eau. / La « shadow corrosion » est un phénomène observé sur les gaines en alliages de zirconium des assemblages de combustibles dans les réacteurs nucléaires. Il consiste en l'augmentation de la corrosion sur les zones de la gaine qui sont à proximité d'autres parties de l'assemblage en Inconel. Afin d'améliorer la compréhension de ses mécanismes, des modèles numériques sont développés suivant deux axes d'études. Un premier modèle de couplage galvanique a pour but de dégager les facteurs de premier ordre. Les résultats des simulations montrent que l'intensité du courant anodique, et sa dépendance en potentiel, contrôlent le caractère local (effet d'ombre) de ce phénomène. D'autre part, cet effet nécessitant un courant cathodique assez élevé révèle l'importance du pouvoir oxydant de l'électrolyte. Un deuxième modèle d'oxydation du zirconium est développé en intégrant le transport multi particules dans l'oxyde. Ce modèle, couplé aux effets d'interfaces (métal/oxyde et oxyde/électrolyte), permet de démontrer le rôle crucial de la polarisation et de l'hydrogène provenant de la dissociation de l'eau sur les cinétiques d'oxydation. A partir de ces modèles, un scénario explicatif de la shadow corrosion est élaboré suggérant l'importance de la radiolyse de l'eau.
|
Page generated in 0.0533 seconds