• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An investigation of glial metabotropic glutamate receptors and their signalling mechanisms

Kanumilli, Srinivasan January 2001 (has links)
No description available.
2

A study on the cerebellar afferent projections from neurons in motor nuclei of cranial nerves demonstrated by retrograde axonal transport of horseradish peroxidase /

Nopparat Tippayatorn, Naiphinich Kotchabhakdi, January 1982 (has links) (PDF)
Thesis (M.Sc. (Anatomy))--Mahidol University, 1982.
3

Caracteriza??o comportamental e distribui??o de neur?nios inibit?rios em um modelo animal de autismo induzido por ?cido valpr?ico

Sousa, Juliana Alves Brand?o Medeiros de 23 August 2013 (has links)
Made available in DSpace on 2014-12-17T15:28:53Z (GMT). No. of bitstreams: 1 JulianaABMS_DISSERT.pdf: 2223845 bytes, checksum: 223f33020eca4ef9f2713bc27ef300ca (MD5) Previous issue date: 2013-08-23 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / Autism comprises a heterogeneous group of neurodevelopmental disorders that affects the brain maturation and produces sensorial, motor, language and social interaction deficits in early childhood. Several studies have shown a major involvement of genetic factors leading to a predisposition to autism, which are possibly affected by environmental modulators during embryonic and post-natal life. Recent studies in animal models indicate that alterations in epigenetic control during development can generate neuronal maturation disturbances and produce a hyper-excitable circuit, resulting in typical symptoms of autism. In the animal model of autism induced by valproic acid (VPA) during rat pregnancy, behavioral, electrophysiological and cellular alterations have been reported which can also be observed in patients with autism. However, only a few studies have correlated behavioral alterations with the supposed neuronal hyper-excitability in this model. The aim of this project was to generate an animal model of autism by pre-natal exposure to VPA and evaluate the early post-natal development and pre-puberal (PND30) behavior in the offspring. Furthermore, we quantified the parvalbumin-positive neuronal distribution in the medial prefrontal cortex and Purkinje cells in the cerebellum of VPA animals. Our results show that VPA treatment induced developmental alterations, which were observed in behavioral changes as compared to vehicle-treated controls. VPA animals showed clear behavioral abnormalities such as hyperlocomotion, prolonged stereotipies and reduced social interaction with an unfamiliar mate. Cellular quantification revealed a decrease in the number of parvalbumin-positive interneurons in the anterior cingulate cortex and in the prelimbic cortex of the mPFC, suggesting an excitatory/inhibitory unbalance in this animal model of autism. Moreover, we also observed that the neuronal reduction occurred mainly in the cortical layers II/III and V/VI. We did not detect any change in the density of Purkinje neurons in the Crus I region of the cerebellar cortex. Together, our results strengthens the face validity of the VPA model in rats and shed light on specific changes in the inhibitory circuitry of the prefrontal cortex in this autism model. Further studies should address the challenges to clarify particular electrophysiological correlates of the cellular alterations in order to better understand the behavioral dysfunctions / O autismo compreende um grupo heterog?neo de desordens do neurodesenvolvimento que afetam a matura??o cerebral e produzem d?ficits sensoriais, motores, de linguagem e de intera??o social no in?cio da inf?ncia. Diversos estudos tem demonstrado um importante envolvimento de fatores gen?ticos que levam ? predisposi??o ao autismo, que s?o possivelmente afetados por modula??es ambientais durante a vida embrion?ria e p?s-natal. Estudos recentes em modelos animais indicam que altera??es no controle epigen?tico durante o desenvolvimento podem gerar dist?rbios na matura??o neuronal e produzir um circuito hiper-excit?vel, resultando em sintomas t?picos do autismo. No modelo animal de autismo induzido por ?cido valpr?ico (VPA) durante a gesta??o de ratas, foram observadas altera??es comportamentais, eletrofisiol?gicas e celulares semelhantes ?s observadas nos pacientes com autismo. Entretanto, ainda s?o poucos os estudos que correlacionam altera??es comportamentais com a suposta hiper-excitabilidade neuronal desse modelo. O objetivo desse estudo foi de gerar o modelo animal de autismo por exposi??o pr?-natal ao VPA e avaliar o desenvolvimento e comportamento p?s-natal e pr?-p?bere (PND 30). Al?m disso, quantificamos a distribui??o neuronal de interneur?nios parvalbumina-positivos no c?rtex pr?-frontal medial (CPFm) e de c?lulas de Purkinje no cerebelo de animais VPA. Nossos resultados mostraram que o tratamento com VPA induziu altera??es no desenvolvimento, que foram observadas em altera??es comportamentais quando comparadas com os animais controle. Animais VPA mostraram claras altera??es comportamentais, como hiperlocomo??o, estereotipia prolongada e redu??o na intera??o social com animal n?o-familiar. A quantifica??o celular revelou uma diminui??o no n?mero de interneur?nios parvalbumina-positivos no c?rtex cingulado anterior e no c?rtex pr?-l?mbico, sugerindo um desbalan?o na excita??o/inibi??o nesse modelo animal de autismo. Tamb?m observamos que essa redu??o ocorreu principalmente nas camadas corticais II/III e V/VI. N?o observamos modifica??o na densidade de c?lulas de Purkinje na regi?o Crus I do c?rtex cerebelar. Em conjunto, nossos resultados fortalecem a validade de face do modelo VPA em ratos e relatam modifica??es espec?ficas na circuitaria inibit?ria do CPFm nesse modelo de autismo. Novos estudos devem abordar correlatos eletrofisiol?gicos particulares com altera??es celulares, de forma a esclarecer as disfun??es comportamentais encontradas nesse modelo animal
4

D-amino acid oxidase, D-serine and the dopamine system : their interactions and implications for schizophrenia

Betts, Jill Frances January 2012 (has links)
D-amino acid oxidase (DAO) is a flavin-dependent enzyme that is expressed in the mammalian brain. It is the metabolising enzyme of several D-amino acids, including D serine, which is an endogenous agonist at the glycine co-agonist site of the glutamatergic NMDA receptor. As such, regulation of D serine levels in the brain by DAO may indirectly modulate the activity of NMDA receptors. The expression and activity of DAO have been reported to be increased in schizophrenia. It has been identified as a putative susceptibility gene for the disorder, and as a potential therapeutic target. This thesis explored three aspects of the interface between DAO and the DA system. First, the expression of DA was investigated in the ventral tegmental area (VTA), the source of the dopaminergic mesocortical pathway. Traditionally, DAO was considered to be an enzyme confined to the hindbrain and to glia, but more recent studies have reported its expression in additional brain regions, and also in neurons. DAO mRNA and protein was found to be expressed in the VTA, and was present in both neurons and glia in this region, whereas in the cerebellum, DAO expression appeared solely glial. DA output from the VTA is regulated by NMDA receptors, and hence expression of DAO in the VTA suggests that it may serve a role in modulating cortical DA via regulation of D serine levels and NMDA receptor function. The second part of this thesis investigated the effects of DAO inhibition and D serine administration on DA levels in the prefrontal cortex (PFC) using in vivo microdialysis. Systemic DAO inhibition and D serine administration resulted in increases in extracellular levels of DA metabolites in the PFC, despite no detectable change in DA. Similarly, DA metabolites in the PFC increased after local application of D serine to the VTA, but no change was detected in DA. However, local DAO inhibition in the VTA resulted in increased levels of both DA and its metabolites, and DAO inhibition combined with D serine administration also produced increases in DA. This suggested that DAO and its regulation of D-serine levels may serve to indirectly modulate mesocortical DA function, and this may be mediated via the VTA. This notion was supported in the final section of this thesis, in which the expression of three DA genes was measured in the PFC of a novel line of DAO knockout mice. In this pilot study, there was evidence for an increase in Comt and Drd2 mRNAs in the knockout mice. As such, constitutive abolition of DAO activity may also alter mesocortical DA function. These studies provide new insights into the presence and role of DAO beyond the hindbrain, and point to a potentially important physiological function in modulating the activity of the mesocortical DA system via the VTA. This could be therapeutically relevant in the context of elevating cortical DA in the treatment of schizophrenia, and may provide supporting evidence for the clinical use of DAO inhibitors.

Page generated in 0.0737 seconds