• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 297
  • 121
  • 99
  • 38
  • 18
  • 16
  • 16
  • 12
  • 11
  • 11
  • 5
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 745
  • 114
  • 103
  • 74
  • 69
  • 62
  • 61
  • 60
  • 57
  • 56
  • 55
  • 52
  • 50
  • 48
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Functional Substrates of Social Odor Processing within the Corticomedial Amygdala: Implications for Reproductive Behavior in Male Syrian Hamsters

Maras, Pamela Mary 19 April 2010 (has links)
Adaptive reproductive behavior requires the ability to recognize and approach possible mating partners in the environment. Syrian hamsters (Mesocricetus auratus) provide a useful animal model by which to study the neural processing of sexual signals, as mate recognition in this species relies almost exclusively on the perception of social odors. In the laboratory, male hamsters prefer to investigate female odors compared to male odors, and this opposite-sex odor preference provides a sensitive measure of the underlying neural processing of sexual stimuli. In addition to chemosensory cues, reproductive behavior in hamsters also requires sufficient levels of circulating gonadal steroid hormones, which reflect the reproductive state of the animal. These chemosensory and hormone signals are processed within an interconnected network of ventral forebrain nuclei, and within this network, the posteromedial cortical amygdala (PMCo) and medial amygdala (MA) are the only nuclei that both receive substantial chemosensory input and are also highly sensitive to steroid hormones. Although a large body of evidence suggests that the MA is critical for generating attraction to sexual odors, the specific role of the PMCo in regulating odor-guided aspects of male reproductive behavior has never been directly tested. Furthermore, detailed analyses of the MA suggest that separate, but interconnected sub-regions within this nucleus process odors differently. Specifically, the anterior MA (MeA) receives the majority of chemosensory input and responds to a variety of social odors, whereas the posterodorsal MA (MePD) receives less chemosensory input but contains the vast majority of steroid receptors. In order to further elucidate how the PMCo and/or MA process sexual odors, this dissertation addressed the following research questions: (1) Is the PMCo required for the expression of either opposite-sex odor preferences or male copulatory behavior? (2) Are functional interactions between MeA and MePD required for the expression of opposite-sex odor preferences? (3) How do MeA and MePD regulate odor responses within the MePD and MeA, respectively? (4) Are odor and/or hormone cues conveyed directly between MeA and MePD? Together, these experiments provide a comprehensive analysis of the functional and neuroanatomical substrates by which the brain processes sexual odors and generates appropriate behavioral responses to these stimuli.
292

The Reorganization of Primary Auditory Cortex by Invasion of Ectopic Visual Inputs

Mao, Yuting 06 May 2012 (has links)
Brain injury is a serious clinical problem. The success of recovery from brain injury involves functional compensation in the affected brain area. We are interested in general mechanisms that underlie compensatory plasticity after brain damage, particularly when multiple brain areas or multiple modalities are included. In this thesis, I studied the function of auditory cortex after recovery from neonatal midbrain damage as a model system that resembles patients with brain damage or sensory dysfunction. I addressed maladaptive changes of auditory cortex after invasion by ectopic visual inputs. I found that auditory cortex contained auditory, visual, and multisensory neurons after it recovered from neonatal midbrain damage (Mao et al. 2011). The distribution of these different neuronal responses did not show any clustering or segregation. As might be predicted from the fact that auditory neurons and visual neurons were intermingled throughout the entire auditory cortex, I found that residual auditory tuning and tonotopy in the rewired auditory cortex were compromised. Auditory tuning curves were broader and tonotopic maps were disrupted in the experimental animals. Because lateral inhibition is proposed to contribute to refinement of sensory maps and tuning of receptive fields, I tested whether loss of inhibition is responsible for the compromised auditory function in my experimental animals. I found an increase rather than a decrease of inhibition in the rewired auditory cortex, suggesting that broader tuning curves in the experimental animals are not caused by loss of lateral inhibition. These results suggest that compensatory plasticity can be maladaptive and thus impair the recovery of the original sensory cortical function. The reorganization of brain areas after recovery from brain damage may require stronger inhibition in order to process multiple sensory modalities simultaneously. These findings provide insight into compensatory plasticity after sensory dysfunction and brain damage and new information about the role of inhibition in cross-modal plasticity. This study can guide further research on design of therapeutic strategies to encourage adaptive changes and discourage maladaptive changes after brain damage, sensory/motor dysfunction, and deafferentation.
293

An in vitro model of the brain tissue reaction to chronically implanted recording electrodes reveals essential roles for serum and bFGF in glial scarring

Polikov, Vadim Steven January 2009 (has links)
<p>Chronically implanted recording electrode arrays linked to prosthetics have the potential to make positive impacts on patients suffering from full or partial paralysis [1;2]. Such arrays are implanted into the patient's cortical tissue and record extracellular potentials from nearby neurons, allowing the information encoded by the neuronal discharges to control external devices. While such systems perform well during acute recordings, they often fail to function reliably in clinically relevant chronic settings [3]. Available evidence suggests that a major failure mode of electrode arrays is the brain tissue reaction against these implants (termed the glial scar), making the biocompatibility of implanted electrodes a primary concern in device design. Previous studies have focused on modifying the form factor of recording arrays, implanting such arrays in experimental animals, and, upon explantation, evaluating the glial scarring in response to the implant after several weeks in vivo. Because of a lack of information regarding the mechanisms involved in the tissue reaction to implanted biomaterials in the brain, it is not surprising that these in vivo studies have met with limited success. This dissertation describes the development of a simple, controlled in vitro model of glial scarring and the utilization of that model to probe the cellular and molecular mechanisms behind glial scarring.</p><p>A novel in vitro model of glial scarring was developed by adapting a primary cell-based system previously used for studying neuroinflammatory processes in neurodegenerative disease [4]. Midbrains from embryonic day 14 Fischer 344 rats were mechanically dissociated and grown on poly-D-lysine coated 24 well plates to a confluent layer of neurons, astrocytes, and microglia. The culture was injured with either a mechanical scrape or foreign-body placement (segments of 50 mm diameter stainless steel microwire), fixed at time points from 6 h to 10 days, and assessed by immunocytochemistry. Microglia invaded the scraped wound area at early time points and hypertrophied activated astrocytes repopulated the wound after 7 days. The chronic presence of microwire resulted in a glial scar forming at 10 days, with microglia forming an inner layer of cells coating the microwire, while astrocytes surrounded the microglial core with a network of cellular processes containing upregulated GFAP. Neurons within the culture did not repopulate the scrape wound and did not respond to the microwire, although they were determined to be electrically active through patch clamp recording. </p><p>This initial model recreated many of the hallmarks of glial scarring around electrodes used for recording in the brain; however, the model lacked the reproducibility necessary to establish a useful characterization tool. After the protocol was amended to resemble protocols typically used to culture neural stem/precursor cells, an intense scarring reaction was consistently seen [5]. To further optimize and characterize the reaction, six independent cell culture variables (growth media, seeding density, bFGF addition day, serum concentration in treatment media, treatment day, and duration of culture) were varied systematically and the resulting scars were quantified. The following conditions were found to give the highest level of scarring: Neurobasal medium supplemented with B27, 10% fetal bovine serum at treatment, 10 ng/ml b-FGF addition at seeding and at treatment, treatment at least 6 days after seeding and scar growth of at least 5 days. Seeding density did not affect scarring as long as at least 500,000 cells were seeded per well, but appropriate media, bFGF, and serum were essential for significant scar formation. </p><p>The optimized in vitro model was then used to help uncover the underlying molecular and cellular mechanisms behind glial scarring. A microwire coating that mimics the basal lamina present within glial scars was developed that allows cells responding to the coated microwire to be isolated and evaluated (i.e. through cell counting or cell staining). A panel of soluble factors known to be involved in glial scar formation was added to the media and the cellular response was recorded. The extent of cell accumulation on the coated microwires was significantly increased by titration of the culture with serum, the pleotropic growth factor bFGF, the inflammatory cytokines IL-1&alpha; and IL-1&beta;, and the growth factors PDGF and BMP-2. The other fourteen soluble factors tested had little to no effect on the number of cells that attached to the coated microwires, although a specific blocker of the bFGF receptor was able to abrogate the effect of bFGF. This study proposes essential roles in glial scarring of serum, which infiltrates brain tissue upon disruption of the blood-brain barrier, and bFGF, which is a necessary growth and survival factor for the neural precursor cells that respond to injury. These insights suggest repeated rounds of implant micromotion-induced cellular damage, with the resultant neuronal death, serum release, and bFGF deposition may thicken the glial scar and lead to recording signal loss.</p> / Dissertation
294

Voxel-based Cortical Thickness Measurement of Human Brain Using Magnetic Resonance Imaging

Chen, Wen-Fu 14 February 2012 (has links)
Cerebral cortex, classified as gray matter, is the superficial layer of the cerebrum. In recent years, many studies have shown the abnormality of cortical thickness is possibly correlated to the disease or disorder in central nervous system, such as Alzheimer¡¦s disease and lissencephaly. Therefore, this purpose of this work is to implement the measurement of the cortical thickness. In general, two approaches, surface-based and voxel-based methods, have been proposed to measure the cortical thickness. In this thesis, a procedure of the voxel-based method using Laplace¡¦s equation was developed on the basis of a 2008 publication reported by Chloe Hutton et al to obtain voxel-based cortical thickness (VBCT) map. The result of our home-made program was further compared with those calculated by Hutton¡¦s program, whic h was generously provided by the author. The difference between two implementations was consisted of four main parts. First of all, different strategies of the tissue classification were used to define boundary condition of Laplace¡¦s equation. When grey matter, white matter, and cerebrospinal fluid were classified by maximizing the tissue probability, Hutton¡¦s program tends to search more voxels of cerebrospinal fluid in sulci by skeletonizing the non-parenchyma area. Second, the algorithm of layer growing also differs. The single layer obtained by the 26-neighborhood algorithm in our program would be obviously thicker than that provided by Hutton¡¦s program using 6-neighborhood. Third, compared with a fixed step size (usually 0.5 mm) porposed in the main reference to track cortical streamline, we designed a variable step size, reducing the underestimation of cortical thickness. The last but not the least, the connecting points of the cortical streamline usually are not grid points, thus requiring interpolation to estimate the stepping gradient. We adapted the linear interpolation for better accuracy when Hutton et al searched for the closest grid point for replacement to achieve faster computation.
295

The affects of exercise and brain plasticity, discussed in relation to Functional oriented Music Therapy; a theoretical study

Carlsson, Josefine January 2007 (has links)
<p>Abstract</p><p>This essay examines which role functional oriented music therapy, which is supposed to help sensorimotor development, can have in schools and in health care. To find this out, research about what kinds of effects exercise can have on academic achievements and in recovery from brain injuries has been brought up. The research concerning academic achievements was conducted with school children; some children without difficulties, some with sensory integration problems, and some with motor skill difficulties. In addition to this, research about the brain structure superior colliculus, which lies behind sensory integration, is also brought up.</p><p>The results showed that children who were given more exercise had significantly better scores in academic skills than the children with normal academic education. Thus, it might be reasonable to practise functional oriented music therapy in schools, both as helping general development, but also for children with different types of difficulties.</p><p>The research concerning exercise and injuries has made clear that the adult brain can change via neurogenesis, plasticity and cortical reorganization. These three aspects are important when practicing a skill or when recovering from an injury. Exercise has been shown to affect these three aspects positively and can therefore also aid the recovery from injuries.</p><p>Thus, there seems to be many theoretical aspects supporting the FMT- method. However, the question is if the results of one treatment form can generalize over such a wide range of injuries and defects that the FMT –adepts usually have. It is therefore also discussed if further experiments on the FMT-method could help make it a more effective tool for rehabilitation.</p>
296

Experience-Dependent Loss of Cross-Modal Plasticity in Mouse Visual Cortex

Min, Lia 01 November 2012 (has links)
We perceive the world through sensory experience. Sensory information is registered and processed by our brain in a modality specific fashion. Interestingly, studies have shown that the visual cortex of early but not late blind subjects is able to respond to touch or sound (Sadato et al., 1996; Buchel et al., 1998; Weeks et al., 2000; Gougoux et al., 2009). Here, we investigated whether sensory parcellation in adult cortex is innate or is acquired during early postnatal life in an experience-dependent manner. Furthermore, we studied the anatomical substrates and molecular pathways possibly involved in cross-modal activation and its plasticity. First, mice were reared from birth in total darkness until adulthood (DR) to replicate the human blind condition. Cross-modal activity and the underlying circuitry were analyzed. We found that DR visual cortex was strongly activated by sound stimulation using functional imaging, single-unit recording, and c-Fos immunohistochemistry. Functional analysis was followed by anatomical tracing studies, which showed ectopic projections from the auditory thalamus and auditory cortex into the secondary visual area in DR animals. The second half of our study looked at how visual experience affects cross-modal plasticity. We found that cross-modal activity and ectopic connectivity is present in normally reared young mice (25 postnatal days: P25). Normal sensory experience through the first two months of postnatal life was sufficient to decrease the number of ectopic inputs. Interestingly, exposing DR mice to visual experience as adults established transient functional sensory specificity in the visual cortex without eliminating the ectopic anatomical inputs. Lastly, we tested several molecular pathways that can potentially regulate cross-modal plasticity. We found that myelin signaling and cholinergic modulation controls the duration of cross-modal plasticity and consolidates sensory modularization. Overall, our work proposes a model of how cross-modal inputs into early sensory areas are pruned or retained depending on early life experience. This study provides insight into how the cortex develops functional specificity, and help approach disorders that exhibit abnormal sensory integration and disrupted neuronal connectivity such as Autism Spectrum Disorder.
297

Building a Bigger Brain: Centriole Control of Cerebral Cortical Development

Hu, Wen Fan January 2014 (has links)
Human genetics has identified essential roles for many centriole- and cilia-related proteins during human development. Mutations in centrosome-associated genes commonly cause microcephaly, or "small brain," and mutations in cilia-associated genes cause a diverse spectrum of diseases termed "ciliopathies." However, the functional relationships between these two crucial organelles are less well studied. The activities of centrosome-related proteins during mitosis and cytoskeletal remodeling are well-characterized, but their in vivo functions are incompletely understood. Here, we identify novel human mutations in a centrosomal gene which encodes a regulatory subunit of a microtubule interacting protein, and uncover unexpected pathways during vertebrate development. Human mutations cause severe microlissencephaly, reflecting defects in cerebral cortical neurogenesis, and loss of function in mice and zebrafish confirm essential roles in embryonic development, neurogenesis, and cell survival. Surprisingly, null mutant embryos display hallmarks of aberrant Sonic hedgehog signaling, including holoprosencephaly. Deficient induced pluripotent stem cells and lymphoblasts show defective proliferation and spindle structure, while deficient fibroblasts also demonstrate a remarkable excess of centrioles, including excessive maternal centrioles, with supernumerary cilia but deficient Hedgehog signaling. Our results reveal novel roles for this protein in regulating overall centriole number, mother centriole and cilia number, and as an essential gene for normal Hedgehog signaling during neocortical development.
298

Thermal coefficients of methyl groups within ubiquitin and metabolic coupling of NAA and lactate in cortical neurons

Bakhtiari, Davood 06 September 2013 (has links)
No description available.
299

Vision, cortical maps and neuronal plasticity in Bassoon and PSD-95 mutant mice. / Vision, cortical maps and neuronal plasticity in Bassoon and PSD-95 mutant mice.

Götze, Bianka 16 April 2013 (has links)
No description available.
300

Reversible decortication and habituation of reactions to novelty.

Nadel, Lynn. January 1965 (has links)
Repetitive presentation of any non-significant stimulus to an animal results in a decrement in the animal's response to that stimulus. This phenomenon, termed habituation, is distinguishable from fatigue and receptor adaptation in that it is long-lasting and in that the habituation is fairly specific to the repeated stimulus. The prevailing view of habituation is that it, like learning in general, results from an increase in the efficacy of neural transmission, but, unlike learning, this increased efficacy primarily affects inhibitory interneurons (e.g., Soko1ov, 1960; Hernandez-Peon, 1960; Jouvet, 1961). Within this broad framework, disagreements exist regarding the source of the inhibitory influences. [...]

Page generated in 0.037 seconds