• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 1
  • Tagged with
  • 18
  • 18
  • 9
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Gravitational torque-driven black hole growth and feedback in cosmological simulations

Anglés-Alcázar, Daniel, Davé, Romeel, Faucher-Giguère, Claude-André, Özel, Feryal, Hopkins, Philip F. 21 January 2017 (has links)
We investigate black hole-host galaxy scaling relations in cosmological simulations with a self-consistent black hole growth and feedback model. Our sub-grid accretion model captures the key scalings governing angular momentum transport by gravitational torques from galactic scales down to parsec scales, while our kinetic feedback implementation enables the injection of outflows with properties chosen to match observed nuclear outflows (star formation-driven winds are not included to isolate the effects of black hole feedback). We show that 'quasar mode' feedback can have a large impact on the thermal properties of the intergalactic medium and the growth of galaxies and massive black holes for kinetic feedback efficiencies as low as 0.1 per cent relative to the bolometric luminosity. None the less, our simulations indicate that the black hole-host scaling relations are only weakly dependent on the effects of black hole feedback on galactic scales, since black hole feedback suppresses the growth of galaxies and massive black holes by a similar amount. In contrast, the rate at which gravitational torques feed the central black hole relative to the host galaxy star formation rate governs the slope and normalization of the black hole-host correlations. Our results suggest that a common gas supply regulated by gravitational torques is the primary driver of the observed co-evolution of black holes and galaxies.
12

Impact of a Locally Measured H-0 on the Interpretation of Cosmic-chronometer Data

Wei, Jun-Jie, Melia, Fulvio, Wu, Xue-Feng 01 February 2017 (has links)
Many measurements in cosmology depend on the use of integrated distances or time, but. galaxies evolving passively on a timescale much longer than their age difference allow us to determine the expansion rate H(z) solely as a function of the redshift-time derivative dz/dt. These model-independent "cosmic chronometers" can therefore be powerful discriminators for testing different cosmologies. In previous applications, the available sources strongly disfavored models (such as Lambda CDM) predicting a variable acceleration, preferring instead a steady expansion rate over the redshift range 0 less than or similar to z less than or similar to 2. A more recent catalog of 30 objects appears to suggest non-steady expansion. In this paper, we show that such a result is entirely due to the inclusion of a high, locally inferred value of the Hubble constant H-0 as an additional datum in a set of otherwise pure cosmic-chronometer measurements. This H-0, however, is not the same as the background Hubble constant if the local expansion rate is influenced by a Hubble Bubble. Used on their own, the cosmic chronometers completely reverse this conclusion, favoring instead a constant expansion rate out to z similar to 2.
13

The H II galaxy Hubble diagram strongly favours R-h = ct over Lambda CDM

Wei, Jun-Jie, Wu, Xue-Feng, Melia, Fulvio 01 December 2016 (has links)
We continue to build support for the proposal to use H II galaxies (HIIGx) and giant extragalactic H II regions (GEHR) as standard candles to construct the Hubble diagram at redshifts beyond the current reach of Type Ia supernovae. Using a sample of 25 high-redshift HIIGx, 107 local HIIGx, and 24 GEHR, we confirm that the correlation between the emission -line luminosity and ionized -gas velocity dispersion is a viable luminosity indicator, and use it to test and compare the standard model Lambda CDM and the R-h = ct universe by optimizing the parameters in each cosmology using a maximization of the likelihood function. For the flat Lambda CDM model, the best fit is obtained with Omega(m) = 0.40(-0.09)(+0.09). However, statistical tools, such as the Akaike (AIC), Kullback (KIC) and Bayes (BIC) Information Criteria favour R-h = Ct over the standard model with a likelihood of approximate to 94.8-98.8 per cent versus only per cent. For wCDM (the version of ACDM with a dark -energy equation of state wde = Pde/Pde rather than was t WA = 1), a statistically acceptable fit is realized with Omega(m) = 0.221(-0.14)(+0.16) and wde = 0.511'0'21-5" which, however, are not fully consistent with their concordance values. In this case, wCDM has two more free parameters than R-h = Ct, and is penalized more heavily by these criteria. We find that R-h = Ct is strongly favoured over wCDM with a likelihood of approximate to 92.9-99.6 per cent versus only 0.4-7.1 per cent. The current HIIGx sample is already large enough for the BIC to rule out ACDM/wCDM in favour of R-h = Ct at a confidence level approaching 3 sigma.
14

Connecting the First Galaxies with Ultrafaint Dwarfs in the Local Group: Chemical Signatures of Population III Stars

Jeon, Myoungwon, Besla, Gurtina, Bromm, Volker 17 October 2017 (has links)
We investigate the star formation history (SFH) and chemical evolution of isolated analogs of Local Group (LG) ultrafaint dwarf galaxies (UFDs; stellar mass range of 10(2)M(circle dot) < M-*< 10(5) M-circle dot) and gas-rich, low-mass dwarfs (Leo P analogs; stellar mass range of 10(5)M(circle dot) < M-*< 10(6) M-circle dot). We perform a suite of cosmological hydrodynamic zoom-in simulations to follow their evolution from the era of the first generation of stars down to z=0. We confirm that reionization, combined with supernova (SN) feedback, is primarily responsible for the truncated star formation in UFDs. Specifically, halos with a virial mass of M-vir less than or similar to 2 x 10(9) M-circle dot form greater than or similar to 90% of stars prior to reionization. Our work further demonstrates the importance of Population. III stars, with their intrinsically high [C/Fe] yields and the associated external metal enrichment, in producing low-metallicity stars ([Fe/H] less than or similar to -4) and carbon-enhanced metal-poor (CEMP) stars. We find that UFDs are composite systems, assembled from multiple progenitor halos, some of which hosted only Population. II stars formed in environments externally enriched by SNe in neighboring halos, naturally producing extremely low metallicity Population II stars. We illustrate how the simulated chemical enrichment may be used to constrain the SFHs of true observed UFDs. We find that Leo P analogs can form in halos with M-vir similar to 4 x 10(9) M-circle dot 9 (z = 0). Such systems are less affected byreionization and continue to form stars until z = 0, causing higher-metallicity tails. Finally, we predict the existence of extremely low metallicity stars in LG UFD galaxies that preserve the pure chemical signatures of Population III nucleosynthesis.
15

A two-point diagnostic for the H ii galaxy Hubble diagram

Leaf, Kyle, Melia, Fulvio 03 1900 (has links)
A previous analysis of starburst-dominated HII galaxies and HII regions has demonstrated a statistically significant preference for the Friedmann-Robertson-Walker cosmology with zero active mass, known as the R-h = c(t) universe, over Lambda cold dark matter (Lambda CDM) and its related dark-matter parametrizations. In this paper, we employ a two-point diagnostic with these data to present a complementary statistical comparison of Rh = ct with Planck Lambda CDM. Our two-point diagnostic compares, in a pairwise fashion, the difference between the distance modulus measured at two redshifts with that predicted by each cosmology. Our results support the conclusion drawn by a previous comparative analysis demonstrating that Rh = ct is statistically preferred over Planck Lambda CDM. But we also find that the reported errors in the HII measurements may not be purely Gaussian, perhaps due to a partial contamination by non-Gaussian systematic effects. The use of HII galaxies and HII regions as standard candles may be improved even further with a better handling of the systematics in these sources.
16

Unseen Progenitors of Luminous High-z Quasars in the Rh = ct Universe

Fatuzzo, Marco, Melia, Fulvio 11 September 2017 (has links)
Quasars at high redshift provide direct information on the mass growth of supermassive black holes (SMBHs) and, in turn, yield important clues about how the universe evolved since the first (Pop III) stars started forming. Yet even basic questions regarding the seeds of these objects and their growth mechanism remain unanswered. The anticipated launch of eROSITA and ATHENA is expected to facilitate observations of high-redshift quasars needed to resolve these issues. In this paper, we compare accretion-based SMBH growth in the concordance Lambda CDM model with that in the alternative Friedmann-Robertson-Walker cosmology known as the R-h = ct universe. Previous work has shown that the timeline predicted by the latter can account for the origin and growth of the greater than or similar to 10(9) M-circle dot highest redshift quasars better than that of the standard model. Here, we significantly advance this comparison by determining the soft X-ray flux that would be observed for Eddington-limited accretion growth as a function of redshift in both cosmologies. Our results indicate that a clear difference emerges between the two in terms of the number of detectable quasars at redshift z greater than or similar to 7, raising the expectation that the next decade will provide the observational data needed to discriminate between these two models based on the number of detected high-redshift quasar progenitors. For example, while the upcoming ATHENA mission is expected to detect similar to 0.16 (i.e., essentially zero) quasars at z similar to 7 in R-h = ct, it should detect similar to 160 in Lambda CDM-a quantitatively compelling difference.
17

Analysing H(z) data using two-point diagnostics

Leaf, Kyle, Melia, Fulvio 09 1900 (has links)
Measurements of the Hubble constantH(z) are increasingly being used to test the expansion rate predicted by various cosmological models. But the recent application of two-point diagnostics, such as Om(zi, zj) and Omh(2)(zi, zj), has produced considerable tension between Lambda CDM's predictions and several observations, with other models faring even worse. Part of this problem is attributable to the continued mixing of truly model-independent measurements using the cosmic-chronometer approach, and model-dependent data extracted from baryon acoustic oscillations. In this paper, we advance the use of two-point diagnostics beyond their current status, and introduce new variations, which we call Delta h(zi, zj), that are more useful for model comparisons. But we restrict our analysis exclusively to cosmic-chronometer data, which are truly model independent. Even for these measurements, however, we confirm the conclusions drawn by earlier workers that the data have strongly non-Gaussian uncertainties, requiring the use of both 'median' and 'mean' statistical approaches. Our results reveal that previous analyses using two-point diagnostics greatly underestimated the errors, thereby misinterpreting the level of tension between theoretical predictions and H(z) data. Instead, we demonstrate that as of today, only Einstein-de Sitter is ruled out by the two-point diagnostics at a level of significance exceeding similar to 3s. The R-h = ct universe is slightly favoured over the remaining models, including Lambda cold dark matter and Chevalier-Polarski-Linder, though all of them (other than Einstein-de Sitter) are consistent to within 1 sigma with the measured mean of the Delta h(zi, zj) diagnostics.
18

Extragalactic and cosmological tests of gravity theories with additional scalar or vector fields

Feix, Martin January 2011 (has links)
Despite the many successes of the current standard model of cosmology on the largest physical scales, it relies on two phenomenologically motivated constituents, cold dark matter and dark energy, which account for approximately 95% of the energy-matter content of the universe. From a more fundamental point of view, however, the introduction of a dark energy (DE) component is theoretically challenging and extremely fine-tuned, despite the many proposals for its dynamics. On the other hand, the concept of cold dark matter (CDM) also suffers from several issues such as the lack of direct experimental detection, the question of its cosmological abundance and problems related to the formation of structure on small scales. A perhaps more natural solution might be that the gravitational interaction genuinely differs from that of general relativity, which expresses itself as either one or even both of the above dark components. Here we consider different possibilities on how to constrain hypothetical modifications to the gravitational sector, focusing on the subset of tensor-vector-scalar (TeVeS) theory as an alternative to CDM on galactic scales and a particular class of chameleon models which aim at explaining the coincidences of DE. Developing an analytic model for nonspherical lenses, we begin our analysis with testing TeVeS against observations of multiple-image systems. We then approach the role of low-density objects such as cosmic filaments in this framework and discuss potentially observable signatures. Along these lines, we also consider the possibility of massive neutrinos in TeVeS theory and outline a general approach for constraining this hypothesis with the help of cluster lenses. This approach is then demonstrated using the cluster lens A2390 with its remarkable straight arc. Presenting a general framework to explore the nonlinear clustering of density perturbations in coupled scalar field models, we then consider a particular chameleon model and highlight the possibility of measurable effects on intermediate scales, i.e. those relevant for galaxy clusters. Finally, we discuss the prospects of applying similar methods in the context of TeVeS and present an ansatz which allows to cast the linear perturbation equations into a more convenient form.

Page generated in 0.0584 seconds