• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular characterization of the CP2-related transcription factor, CRTR-1.

To, Sarah January 2009 (has links)
CRTR-1 is a member of the CP2 family of transcription factors. Unlike other CP2 family members, CRTR-1 expression is regulated developmentally. Major sites of expression in the embryo include the pluripotent inner cell mass (ICM) of the pre-implantation blastocyst and the developing kidney. It is also expressed in embryonic stem (ES) cells, which are derived from the ICM of blastocysts, and is downregulated as these cells differentiate into early primitive ectoderm-like (EPL) cells. This expression pattern suggests that CRTR-1 plays a role in early pluripotent populations. This thesis aims to characterize the transcription factor CRTR-1 at the molecular level and analyses the role of sumoylation on CRTR-1 function to develop a better understanding of the molecular role of CRTR-1 in ES cells. Luciferase reporter assays show that CRTR-1 is able to regulate the activities of other CP2 family members: CP2, NF2d9 and altNF2d9. It enhances CP2- and NF2d9-mediated activation but suppresses altNF2d9-mediated activation. To map the functional domains in the CRTR-1 protein, transactivation studies using CRTR-1 deletion mutants fused to the GAL4 DNA binding domain and a GAL4-responsive reporter system were performed. These studies map repressor activity to amino acids 48-200, but fail to identify a transactivation domain within the CRTR-1 protein. In order to understand the mechanisms by which CRTR-1 regulates the transcriptional activities of CP2 family members, a number of approaches are taken, including co-immunoprecipitation to show that CRTR-1 interacts with other CP2-like proteins, EMSA which demonstrate that CRTR-1 forms DNA binding complexes with CP2 family members, and subcellular protein localisation studies which reveal the ability of CRTR-1 and other family members to shuttle between the nucleus and cytoplasm via a CRM1-dependent pathway. In addition, the subcellular localisation of CRTR-1 appears to be cell type specific, with an exclusively nuclear localisation pattern in ES cells, a predominantly cytoplasmic localisation pattern in HEK293T cells, and a cytoplasmic and nuclear speckle localisation pattern in COS-1 cells. Co-expression of CRTR-1 with CP2 or NF2d9 results in the re-localisation of CRTR-1 to the cytoplasm in ES cells. The sumoylation enzymes Ubc9 and PIAS1 have previously been identified as CP2-interacting proteins (Kang et al., 2005a). Given the identification of two potential sumoylation sites within CRTR-1, FK³⁰ QE and LK⁴⁶ ⁴AE, and the ability for sumoylation to regulate transcription factor function, the possibility that CRTR-1 is regulated by sumoylation is investigated in this thesis. Immunoprecipitation experiments show that CRTR-1 is modified by SUMO-1 and that lysine 30 is the critical residue for this modification. Mutation of lysine 30 to alanine, which abolishes CRTR-1 sumoylation, results in enhancement of transactivation by CRTR-1, suggesting that sumoylation of CRTR-1 blocks maximal activation. Unexpectedly, however, overexpression of Ubc9, PIAS1, or SUMO-1 results in enhancement of CRTR-1 transcriptional activity, indicating that a more complex mechanism of regulation of CRTR-1 activity is likely. This thesis presents several novel properties of CRTR-1 and other CP2 family members, including the ability of CRTR-1, previously characterized as a repressor, to activate transcription. It is also the first demonstration that CP2 proteins are regulated by sumoylation and that they shuttle between the nucleus and cytoplasm via a CRM1-dependent mechanism. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1374290 / Thesis (Ph.D.) -- University of Adelaide, School of Molecular and Biomedical Science, 2009
2

Molecular characterization of the CP2-related transcription factor, CRTR-1.

To, Sarah January 2009 (has links)
CRTR-1 is a member of the CP2 family of transcription factors. Unlike other CP2 family members, CRTR-1 expression is regulated developmentally. Major sites of expression in the embryo include the pluripotent inner cell mass (ICM) of the pre-implantation blastocyst and the developing kidney. It is also expressed in embryonic stem (ES) cells, which are derived from the ICM of blastocysts, and is downregulated as these cells differentiate into early primitive ectoderm-like (EPL) cells. This expression pattern suggests that CRTR-1 plays a role in early pluripotent populations. This thesis aims to characterize the transcription factor CRTR-1 at the molecular level and analyses the role of sumoylation on CRTR-1 function to develop a better understanding of the molecular role of CRTR-1 in ES cells. Luciferase reporter assays show that CRTR-1 is able to regulate the activities of other CP2 family members: CP2, NF2d9 and altNF2d9. It enhances CP2- and NF2d9-mediated activation but suppresses altNF2d9-mediated activation. To map the functional domains in the CRTR-1 protein, transactivation studies using CRTR-1 deletion mutants fused to the GAL4 DNA binding domain and a GAL4-responsive reporter system were performed. These studies map repressor activity to amino acids 48-200, but fail to identify a transactivation domain within the CRTR-1 protein. In order to understand the mechanisms by which CRTR-1 regulates the transcriptional activities of CP2 family members, a number of approaches are taken, including co-immunoprecipitation to show that CRTR-1 interacts with other CP2-like proteins, EMSA which demonstrate that CRTR-1 forms DNA binding complexes with CP2 family members, and subcellular protein localisation studies which reveal the ability of CRTR-1 and other family members to shuttle between the nucleus and cytoplasm via a CRM1-dependent pathway. In addition, the subcellular localisation of CRTR-1 appears to be cell type specific, with an exclusively nuclear localisation pattern in ES cells, a predominantly cytoplasmic localisation pattern in HEK293T cells, and a cytoplasmic and nuclear speckle localisation pattern in COS-1 cells. Co-expression of CRTR-1 with CP2 or NF2d9 results in the re-localisation of CRTR-1 to the cytoplasm in ES cells. The sumoylation enzymes Ubc9 and PIAS1 have previously been identified as CP2-interacting proteins (Kang et al., 2005a). Given the identification of two potential sumoylation sites within CRTR-1, FK³⁰ QE and LK⁴⁶ ⁴AE, and the ability for sumoylation to regulate transcription factor function, the possibility that CRTR-1 is regulated by sumoylation is investigated in this thesis. Immunoprecipitation experiments show that CRTR-1 is modified by SUMO-1 and that lysine 30 is the critical residue for this modification. Mutation of lysine 30 to alanine, which abolishes CRTR-1 sumoylation, results in enhancement of transactivation by CRTR-1, suggesting that sumoylation of CRTR-1 blocks maximal activation. Unexpectedly, however, overexpression of Ubc9, PIAS1, or SUMO-1 results in enhancement of CRTR-1 transcriptional activity, indicating that a more complex mechanism of regulation of CRTR-1 activity is likely. This thesis presents several novel properties of CRTR-1 and other CP2 family members, including the ability of CRTR-1, previously characterized as a repressor, to activate transcription. It is also the first demonstration that CP2 proteins are regulated by sumoylation and that they shuttle between the nucleus and cytoplasm via a CRM1-dependent mechanism. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1374290 / Thesis (Ph.D.) -- University of Adelaide, School of Molecular and Biomedical Science, 2009
3

Dispersion and Characterization of Nickel Nanostrands in Thermoset and Thermoplastic Polymers

Whalen, Casey Allen 2011 December 1900 (has links)
Nickel Nanostrands (NiNS) are nano-particles that are highly branched and have a high aspect ratio. These particles show promise as excellent additives to composites when electrical conductivity is desired. Unfortunately, there is very little research done on dispersing powdered NiNS in various polymer matrices. This thesis covers the research in dispersing NiNS in three separate polymer systems, and related composite processing and characterization. An aromatic polyimide (CP2) is first used as a thermoplastic matrix and attempts to incorporate NiNS via an in-situ processing technique concurrent with in-situ polymerization are detailed. Epoxy is then used as a representative thermoset where the NiNS are dispersed in the resin before a hardener is added. The last polymer tested is thermoplastic Polyvinylidene Fluoride (PVDF). NiNS are introduced to this polymer in a solution mixture. Once dispersed, the PVDF solution is heated until the solvent evaporates leaving a PVDF melt containing NiNS, which is subsequently cooled. Samples of all three polymer nano-composites are created and dispersion is observed with an optical microscope. Using DSC, DMA and dielectric spectroscopy, thermal, mechanical and electrical properties are measured and analyzed. Results for the CP2 nano-composites showed that during the cure phase, the NiNS settled to the bottom of the films resulting in a non-dispersed composite. This result highlighted the difference between NiNS and other more conventional nano-particles, namely that the NiNS are larger and heavier, therefore are not 'locked into' a dispersed state by the polymer chains. Several techniques were investigated for dispersing NiNS in the epoxy matrix. A method without solvent was shown to be the most effective and resulted in a well-dispersed nano-composite that showed increases in electrical conductivity and dielectric constant as NiNS concentration increases. Enhancement in storage modulus was observed above the composite's Tg as well. PVDF nano-composites also showed good dispersion and a general increase in electrical properties. Below Tg, storage modulus decreases at first before a slight recovery with increasing NiNS. Beyond Tg, the opposite effect is observed. FTIR measurements for the PVDF were also taken and showed no significant changes in the polymer morphology with additions of NINS.
4

Antilarval substituted phenols, distribution of tricyclic pyrones in mice, and synthesis of unnatural amino acids

Nguyen, Thi D.T. January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Duy H. Hua / Three research projects were carried out and they are described below. The synthesis of substituted phenolic compounds including halogenated di- and trihydroxybenzenes, aminophenols, and substituted di-tert-butylphenols are described. Redox potentials of the synthesized molecules along with various known laccase substrates were measured, and an inverse relationship between the oxidation potential and the efficiency of oxidation by laccase of halogenated hydroxybenzenes and aminophenols is demonstrated. The synthesized substituted phenols were found to be substrates but not inhibitors of laccase. We discovered a new class of di-tert-butylphenols compounds that inhibits the growth of mosquito larvae at low concentrations. Compound 17, 2,4-di-tert-butyl-6-(3-methyl-2-butenyl) phenol caused greater than 98% mortality of third-instar larvae of Anopheles gambiae in the concentration of 0.18 µM. These compounds do not inhibit laccases. It appears that they affect a new target of the mosquito that is different from those of currently existing pesticides. Two anti-Alzheimer molecules, CP2 and TP70, discovered in our laboratory were studied for their pharmacokinetics and distribution. The distribution of CP2 and TP70 in mouse brain region and various tissues of mice were examined. HPLC analysis revealed that CP2 treatment in primary neurons accumulates in mitochondria fraction. Similarly, the amount of CP2 in the brain tissue from wild type and APP/PS1 mice treated with 25 mg/kg/daily for 2 months also have the highest concentration in the mitochondria fractions in the hippocampus. The results show that CP2 and TP70 can penetrate the blood brain barrier and accumulate in the tissue in significant amounts. Pharmacokinetics and bioavailability of compound TP70 were determined. Area under the curve and bioavailability value F were calculated, and data show that TP70 has a good PK profile and bioavailability. For the preparation of a novel tripeptidyl norovirus 3C-like protease (3CL[superscript]pro) inhibitor, the P3 unnatural amino acid, (S)-3-hydroxyphenylalanine was synthesized. The P3 is designed to increase the polarity with the addition of the alcohol group. After combining the P3 unnatural amino acid with the P1 and P2 to form the novel tripeptidyl compound, a study comparing the relations between the structure and its activity (SAR) will confirm whether prediction is correct in our pursuit for an antiviral therapeutic drug in the form of a protease inhibitor.

Page generated in 0.0459 seconds