Spelling suggestions: "subject:"cpfdl""
1 |
REVIEW OF BANDWIDTH EFFICIENT MODULATION SCHEMESOsborne, William P., Ara, Sharmin 11 1900 (has links)
International Telemetering Conference Proceedings / October 30-November 02, 1995 / Riviera Hotel, Las Vegas, Nevada / The national telemetry ranges are being pushed to provide higher data rate telemetry
services by users with increasingly complex test procedure for increasingly complex
weapon systems. At the same time they are having trouble obtaining more spectrum in
which to provide these higher rates because of the demand for spectrum in SHF range
from various mobile/cellular Personal Communications Services (PCS) as well as
congress’s desire to auction spectrum and to transfer as much spectrum as possible to
commercial uses. In light of these pressures the industry is in need of a modulation
standard that will out perform the existing PCM/FM standard.
The motivation for the present review and analysis of the performance of various
coded/uncoded modulation schemes arises from this issue. Comparison of the
performance of these schemes will be utilized in the following work to find a suitable
solution to the existing problem.
|
2 |
ADJACENT CHANNEL INTERFERENCE MEASUREMENTS WITH CPFSK AND FQPSK-B SIGNALSLaw, Eugene 10 1900 (has links)
International Telemetering Conference Proceedings / October 22-25, 2001 / Riviera Hotel and Convention Center, Las Vegas, Nevada / This paper will present measured data in an adjacent channel interference (ACI) environment for
both filtered continuous phase frequency shift keying (CPFSK) and Feher’s patented quadrature
phase shift keying (FQPSK-B) [1]. The quantity measured was bit error probability (BEP) versus
signal energy per bit to noise power spectral density ratio (E(b)/N(o)). The interferers were either
CPFSK or FQPSK-B signals. The results presented in this paper will be for bit rates of 5 Mb/s, one
interferer 20 dB larger than desired signal, various channel spacings, and two different telemetry
receivers. The ACI test effort will collect data sets at several bit rates and with one and two
interferers. The results will be useful to system designers and range operators as they attempt to
maximize the number of Mb/s that can be simultaneously transmitted in the telemetry bands.
|
3 |
RECOMMENDED MINIMUM TELEMETRY FREQUENCY SPACING WITH CPFSK, CPM, SOQPSK, AND FQPSK SIGNALSLaw, Eugene 10 1900 (has links)
International Telemetering Conference Proceedings / October 20-23, 2003 / Riviera Hotel and Convention Center, Las Vegas, Nevada / This paper will present equations for calculating the minimum recommended frequency separation of two digital telemetry signals. The signals can be filtered continuous phase frequency shift keying (CPFSK), multi-h continuous phase modulation (CPM) [1], shaped offset quadrature phase shift keying-Telemetry Group (SOQPSK-TG, aka SOQPSK-A*) [2], or Feher’s patented quadrature phase shift keying FQPSK-B (or FQPSK-JR [3]). The equations are based on measured data in an adjacent channel interference (ACI) environment for filtered CPFSK (aka PCM/FM), multi-h CPM (or CPM for short), SOQPSK-TG, FQPSK-JR, and FQPSK-B. This paper is an extension of my 2001 and 2002 International Telemetering Conference papers on this topic [4, 5]. The quantity measured was bit error probability (BEP) versus frequency separation at a given signal energy per bit to noise power spectral density ratio (Eb/No). The interferers were CPFSK, CPM, SOQPSK-TG or FQPSK-B (-JR) signals. The results presented in this paper will be for a desired signal bit rate of 1 to 20 Mb/s, one interferer 20 dB larger than the desired signal (a few tests included two interferers), and various center frequency spacings, interfering signals, receivers, and demodulators. The overall ACI test effort has collected data sets at several bit rates and with one and two interferers. The results will be useful to system designers and range operators as they attempt to maximize the number of Mb/s that can be simultaneously transmitted with minimal interference in the telemetry bands.
|
4 |
ADJACENT CHANNEL INTERFERENCE MEASUREMENTS WITH CPFSK, CPM AND FQPSK-B SIGNALSLaw, Eugene 10 1900 (has links)
International Telemetering Conference Proceedings / October 21, 2002 / Town & Country Hotel and Conference Center, San Diego, California / This paper will present measured data in an adjacent channel interference (ACI) environment for
filtered continuous phase frequency shift keying (CPFSK or FM), multi-h continuous phase
modulation (multi-h CPM or CPM for short) [1] and Feher’s patented quadrature phase shift keying
(FQPSK-B) [2]. This paper is an extension of my 2001 International Telemetering Conference
paper on this topic [3]. The quantity measured was bit error probability (BEP) versus signal energy
per bit to noise power spectral density ratio (E(b)/N(o)). The interferers were CPFSK, CPM, or
FQPSK-B signals. The results presented in this paper will be for a desired signal bit rate of 5 Mb/s,
one interferer 20 dB larger than desired signal (a few tests included two interferers), and various
center frequency spacings, interfering signals, receivers, and demodulators. The overall ACI test
effort will collect data sets at several bit rates and with one and two interferers. The results will be
useful to system designers and range operators as they attempt to maximize the number of Mb/s that
can be simultaneously transmitted with minimal interference in the telemetry bands.
|
5 |
Trellis Coded Multi-h CPFSK via Matched CodesHsieh, Jeng-Shien 19 July 2000 (has links)
The continuous phase frequency shift keying (CPFSK) is a modulation method with memory. The memory results from the phase continuity of the transmitted carrier phase from one signal interval to the next. For a specific form of phase, CPFSK becomes a special case of a general class of continuous phase modulation (CPM) signals. In this thesis, we extend the decomposition model of single-h CPM to the multi-h CPM decomposition model. Based on this decomposition model approach the multi-h CPFSK schemes are evaluated by searching the desired multi-h phase codes at a given number of states.
Moreover, the trellis coded multi-h CPFSK schemes, which are the combination of the (binary) convolutional codes with the multi-h CPFSK schemes, are searching by optimization procedure via the matched encoding method. To further improve the performance, in terms of the coding gain, the ring convolutional codes are applied to the continuous phase encoder (CPE) of the proposed multi-h CPFSK schemes. Due to the fact that the code structure of the ring convolutional codes is similar to the CPE, this will result in having simple and efficient combination of the convolutional codes with the multi-h CPFSK signaling schemes.
|
Page generated in 0.0279 seconds