Spelling suggestions: "subject:"imunoistoquímica"" "subject:"imunohistoquímica""
1 |
Caracterização cristaloquímica, mineralógica e gemológica do berilo do pegmatito mendonça, Distrito de Berilândia, Quixeramobim/CE. / Crystallochemical, mineralogical and gemological characterization of the beryl of the pegmatite mendonça, Berilândia District, Quixeramobim /Ce.Cavalcanti, Débora Ezequiel January 2017 (has links)
CAVALCANTI, Débora Ezequiel. Caracterização cristaloquímica, mineralógica e gemológica do berilo do pegmatito mendonça, Distrito de Berilândia, Quixeramobim/CE. 136 f. Dissertação (Dissertação em Geologia)-Universidade Federal do Ceará, Fortaleza, 2017. / Submitted by JOÃO CAVALCANTI JUNIOR (jbeniciojunior@yahoo.com.br) on 2017-10-18T11:37:03Z
No. of bitstreams: 1
2017_dis_dec.pdf: 8974915 bytes, checksum: 72816be50e8bae5713754402ec93081a (MD5) / Approved for entry into archive by Jairo Viana (jairo@ufc.br) on 2017-10-18T15:52:22Z (GMT) No. of bitstreams: 1
2017_dis_dec.pdf: 8974915 bytes, checksum: 72816be50e8bae5713754402ec93081a (MD5) / Made available in DSpace on 2017-10-18T15:52:22Z (GMT). No. of bitstreams: 1
2017_dis_dec.pdf: 8974915 bytes, checksum: 72816be50e8bae5713754402ec93081a (MD5)
Previous issue date: 2017 / Beryl samples from Mendonça pegmatite, located in the district of Berilândia, Quixeramobim-CE, were analyzed. This pegmatite belonging to the Pegmatitic District of Solonópole-Banabuiú (DPSB), is located in the center-west portion of the State of Ceará, and embedded in the paragneiss basement of the Borborema Province, Ceará Central Domain. It is a pegmatite type mixed, differentiated, complexed, little fertile and its mineralogy presents industrial and gem minerals composition variety, among which, aquamarine, a variety of the beryl group that occurs in blue and green colors, is the focus of this work. The highest concentrations of industrial beryl occur forming pockets. The aquamarine does not occur forming isolated crystals, but rather as dispersed cores and included in the crystals of industrial beryl. A crystallochemical, mineralogical and gemological characterization of blue and green beryls was carried out, where their intrinsic characteristics were analyzed, from the most basic, such as physical properties, to more advanced ones, such as crystalline structure, unit cell parameters, fluid components (H2O types I II and III, CO2, CH4), chromophores elements/ color causes, chemical composition, as well as the presence and nature of impurities, and substitutions in its structure. The methodology used in its characterization was refractometer, hydrostatic balance, optical and gemological microscopes, single-crystal and powder x-ray diffraction (DRX), micro energy dispersive x-ray fluorescence (EDXRF), molecular absorption spectroscopy in the infrared region by Fourier transform (FTIR), Molecular absorption spectroscopy in the ultraviolet-visible-near infrared region (UV-Vis-NIR) and raman spectroscopy. According to the substitutions in its crystalline structure, it was possible to verify the presence of fluid components of H2O type I, II, III and CO2, and the data necessary to determine the polytypes of beryl. Bands attributed to chromophores as well as their ionic charge and positions were also demonstrated. In the chemical compositional analysis, alkaline elements such as Cs, Rb and Na were detected in the channels. The presence of iron as a chromophore element in the beryl structure, resulting in its blue coloration, allows us to call blue beryl samples of aquamarines, even if they do not present an ideal gemological quality for market standards. / Foram analisadas amostras de berilo, oriundas do Pegmatito Mendonça, localizado no distrito de Berilândia, município de Quixeramobim-CE. Esse pegmatito pertencente ao Distrito Pegmatítico de Solonópole-Banabuiú (DPSB) e está localizado na porção centro-oeste do Estado do Ceará, encaixado no embasamento paragnáissico da Província Borborema, Domínio Ceará Central. É um pegmatito do tipo misto, diferenciado, complexo, pouco fértil, apresentando em sua composição mineralógica minerais industriais e minerais gema, dentre os quais, a água-marinha, uma variedade do grupo do berilo, que ocorre nas cores azul e verde e que é foco do presente trabalho. As maiores concentrações do berilo industrial ocorrem formando bolsões. A água-marinha não ocorre formando cristais isolados, mas sim como núcleos dispersos e inclusos nos cristais de berilo industrial. Foi realizada uma caracterização cristaloquímica, mineralógica e gemológica dos berilos azuis e verdes, onde foram analisadas suas características intrínsecas, desde as mais básicas, como propriedades físicas, até as mais avançadas, como estrutura cristalina, parâmetros de cela unitária, componentes fluidos (H2O tipos I II e III, CO2, CH4), elementos cromóforos/causas de cor, composição química, bem como presença e natureza de impurezas e substituições na sua estrutura. A metodologia utilizada na sua caracterização foi refratômetro, balança hidrostática, microscópios óptico e gemológico, difração de raios-X (DRX) pelos métodos do pó e monocristal, micro fluorescência de raios-X por energia dispersiva (micro-EDXRF), espectroscopia de absorção molecular na região do infravermelho, por transformada de Fourier (FTIR), espectroscopia de absorção molecular na região ultravioleta-visível-infravermelho proximal (UV-Vis-NIR) e espectroscopia raman. Foi evidenciada a presença dos componentes fluidos H2O tipos I, II e III e CO2, bem como foram fornecidos dados para determinação dos politipos de berilo, segundo suas substituições na estrutura cristalina. Bandas atribuídas aos elementos cromóforos, bem como sua carga iônica e posição na estrutura cristalina também foram demonstradas. Na análise da composição química dos berilos foram detectados elementos alcalinos tais como Cs, Rb e Na nos canais. A presença de ferro como elemento cromóforo na estrutura do berilo, resultando na sua coloração azul, permite-nos chamar as amostras de berilo azul de águas-marinhas, mesmo que essas não apresentem uma qualidade gemológica ideal para os padrões mercadológicos.
|
2 |
Síntese e cristaloquímica de complexos de Hg(II) e Ni(II) com o ligante 1,3-BIS(4-bromofenil)triazenido / Synthesis and crystalchemistry of Hg(II) AND Ni(II) complexes 1,3-bis(4-bromophenil)triazenide as ligandBehm, Mariana Boneberger 01 March 2006 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / Deprotonated 1,3-Bis(4-bromophenyl)triazene reacts with Hg(CH3COO)2 in methanol yielding [Hg(BrC6H4NNNC6H4Br)2]∞ (1) a triazenide complex polymer of Hg(II). The crystal
structure of (1) reveals one-dimensional infinite chains along the [010] direction through Hg−η2, η2−arene π−interactions. The crystal system of 1 is monoclinic and belongs to the
space group P21/n with the cell parameters a = 15.1741(6) Å, b = 4.6587(2) Å, c = 18.5342(7) Å, β = 94.207(2)°. The crystal structure refinement converge to the final indices R1 = 0.0278, wR2 = 0.0798. A mixture of nickel(II) chloride in methanol/THF reacts with deprotonated 1,3-Bis(4-
bromophenyl)triazene to give cis-Bis{[1,3-(4-bromophenyl)triazenido](pyridine)}nickel(II) (2), a mononuclear complex with Ni(II) showing a rhombic distorted coordination geometry.
In the solid state complex 2 reveals one-dimensional infinite chains with the base vector 0 1 0 as result of intermolecular C−H···Br no classic hydrogen bonds. The crystal structure of 2
belongs to the monoclinic system and the structure was solved with the space group P21/c and the cell parameters a = 10.4677(5) Å, b = 19.6783(9) Å; c = 17.5083(9) Å, β = 91.681(3) °. The structure refinement converges to the final indices R1 = 0.0367, wR2 = 0.0924. Beside the single crystal structure analysis of 1 and 2, both compounds were also
characterized by infrared an UV/VIS spectroscopy. / O 1,3-bis(4-bromofenil)triazeno desprotonado reage com Hg(CH3COO)2 em metanol obtendo-se o composto [Hg(BrC6H4NNNC6H4Br)2]∞ (1), um complexo triazenido polimérico
de Hg(II). A estrutura cristalina de (1) revela cadeias unidimensionais ao longo da direção [010] através de interações Hg−η2, η2−areno π. O sistema cristalino de 1 é monoclínico e pertence ao grupo cristalino P21/n com os parâmetros de cela a = 10,4677(5) Å, b =19,6783(9) Å, c = 17,5083(9) Å, β = 91,681(3) °. O refinamento de estrutura converge aos índices finais R1 = 0,0278, wR2 = 0,0798.
Uma mistura de cloreto de níquel(II) em metanol/THF reage com 3-bis(4-bromofenil)triazeno desprotonado obtendo-se cis-Bis{[1,3-(4-bromofenil)triazenido](piridina)}níquel(II) (2), um complexo mononuclear de Ni(II) que mostra uma distorção rômbica na geometria de coordenação. No estado sólido o complexo (2) revela cadeias unidimensionais com base no vetor 0 1 0 como resultado interações de hidrogênio não-clássicas entre C−H···Br. A estrutura cristalina de 2 pertence ao sistema monoclínico e a estrutura foi solucionada através do grupo espacial P21/c, com parâmetros de cela a = 10,4677(5) Å, b = 19,6783(9) Å, c = 17,5083(9) Å, β = 91,681(3) °. O refinamento de estrutura converge aos índices finais R1 = 0,0367, wR2 = 0,0924. Além da análise da estrutura do monocristal de 1 e 2, ambos compostos foram também
caracterizados por espectroscopia no infravermelho e UV-Vis.
|
3 |
Cristaloquímica dos minerais do lateritico de niquel: o exemplo do vermelho, Serra dos Carajas (PA) / not availableCarvalho e Silva, Maria Luiza Melchert de 24 June 1994 (has links)
Nos depósitos lateríticos de níquel, em função das condições morfoclimáticas e estruturais que reinaram durante o período de desenvolvimento do perfil de alteração, o níquel pode estar associado a várias fases minerais, de tal forma que importantes diferenças na composição do minério são registradas, tanto dentro de um mesmo depósito, quanto entre depósitos de diferentes regiões. A alteração intempérica dos dois corpos de rochas ultramáficas (V1 e V2) do Vermelho, serra dos Carajás (PA) levou à formação de um depósito laterítico de níquel com teores médios da ordem de 1,2% a 1,8%Ni, de acordo com os cálculos de reservas efetuados pela Rio Doce Geologia e Mineração S/A - DOCEGEO. Dois tipos de minério foram definidos para este depósito: o minério silicatado, constituído principalmente por serpentinas acompanhadas por cloritas, esmectitas, opacos e quartzo em menor proporção, com teores médios mais elevados, e o minério oxidado, onde a goethita é o mineral predominante e podem ocorrer também, esmectitas, cloritas, quartzo e opacos. No entanto, como é habitual neste tipo de perfil, estes teores não são devidos a minerais neoformados de níquel. Os teores médios são, portanto, resultado da presença do níquel em uma ou várias das fases minerais presentes no minério. Neste trabalho, amostras provenientes de alguns poços de pesquisa abertos pela DOCEGEO, tanto no corpo V1 quanto no corpo V2, foram estudadas detalhadamente, após descrição petrográfica, com auxilio de técnicas como difração de raios X (DRX), microscopia eletrônica de varredura e de transmissão (MEV-MET), microssonda eletrônica (ME), espectroscopia do infravermelho (IV), espectroscopia Mössbauer. Com base nos dados de composição química e mineralógica, as amostras foram classificadas em três tipos: rocha fresca a parcialmente alterada, minério silicatado e minério oxidado. Na rocha fresca, os teores médios de níquel situam-se em torno de 0,3%NiO e o níquel está presente nas serpentinas, cloritas e flogopitas, em teores da mesma ordem. No minério silicatado, o níquel está igualmente distribuído nas serpentinas, que são nos minerais mais abundantes, e nas cloritas e, em menor quantidade, ocorre nos produtos amorfos e goethita que começam a se formar neste nível. Os silicatos, de origem hipógena se enriquecem incorporando o níquel liberado durante as transformações minerais que se processam nos níveis superiores do perfil de alteração, chegando a teores da ordem de 2-3%NiO. Nas demais fases minerais os teores são da ordem de 1,5%. No minério oxidado, a serpentina desaparece e o níquel associa-se à goethita e às cloritas. Quando ocorrem bolsões de quartzo neste nível, as esmectitas e o talco mal cristalizado associados são também portadores de níquel. As cloritas do minério oxidado, que chegam a conter até 15% de NiO, constituem a fase mineral que mais concentra níquel, o qual situa-se, principalmente, na camada brucítica, em substituição ao Mg. No entanto, apesar de apresentar teores bem mais baixos (1,5%), a principal fase mineral portadora de níquel é a goethita, por ser o mineral mais abundante. Indicações de substituição diadóquica de Fe pelo Ni nestes minerais foram obtidas através de estudos de detalhe. As esmectitas, com cerca de 9% de NiO, e o talco niquelífero são minerais que, quando presentes, causam um aumento do teor médio de níquel do minério oxidado que chega a valores anômalos da ordem de 5%NiO. Nas esmectitas, do tipo nontronitas, o níquel encontra-se na camada octaédrica, distribuído em domínios alternados e domínios ferríferos. Devido à alta concentração de níquel nas cloritas e nas esmectitas, esses minerais têm um papel importante na composição do teor médio do minério nos níveis onde estão presentes. No corpo V2, onde as cloritas são mais abundantes, o minério oxidado possui teores de níquel mais elevados do que no corpo V1. O teor médio no minério oxidado, de 1,2%Nio, é inferior aos teores das fases portadoras de níquel, cloritas e goethita. Essa diluição é devida à presença de opacos e microssilicificações no plasma goethítico que não contém níquel. A originalidade do depósito de níquel do Vermelho está, ao contrário do estabelecido para os demais depósitos deste tipo, na presença, no minério oxidado, de outra fase mineral além da goethita como concentradora de níquel, as cloritas niquelíferas. / Weathering of two ultramafic bodies (V1 and V2) of the Vermelho sector of the Serra dos Carajás (PA) led to the formation of lateritic nickel deposit with mean Ni contents of about 1.2% and 1.8%, according to reserves calculations by Rio Doce Geologia e Mineração S/A- DOCEGEO. Two ore types were defined for this sector: the silicate ore, richer in Ni, is mainly composed of serpentine accompanied by chlorite, smectite, opaque minerals and a lower quartz content; and the oxide ore in which goethite is the main mineral, but in which smectite, chlorite, quartz and opaque minerals are also found. On the other hand, as is common in this type of situation, the nickel concentrations are not due to the presence of newly-formed nickel minerals, but to its presence in one or other of the major minerals of the ore. In this study, samples from DOCEGEO prospection pits opened in the V1 and V2 bodies were subjected to detailed study, including initial petrographic examinations followed by X-ray diffraction, scanning and transmission electron microscopy, electron microprobe and Fourier transform infrared and Mossbauer spectrometry studies. The chemical and mineralogical compositions allow the samples to be classified in three types: fresh to partially altered rock, silicate ore and oxide ore. In fresh rock, mean Ni concentrations are around 0.3% NiO, and Ni is present in serpentite, chlorite and phlogopite, in which the concentrations are of roughly the same order. In the silicate ore, Ni is equally distributed between serpentine - the most abundant mineral - and chlorite, and occurs in lesser quantity in amorphous products and goethite, which being to appear in this ore type. The hypogene silicates become enriched in Ni by incorporation of Ni liberated during the mineral transformations which occur in the upper levels of the alteration profiles. These silicates contain 2-3% NiO, while other phases present contain about 1.5% NiO. In the oxide ore, serpentine dissappears and Ni becomes associated with goethite and chlorite. Where quartz lenses are found, smectites and poorly crystallized talc also contain Ni. Chlorites of the oxide ore contain up to 15% NiO, which substitutes Mg in the brucite layer. Nevertheless, even though its Ni content is much less (1.5% NiO), the most important Ni-bearing phase is goethite, the most abundant mineral. Diadochic substitution of Fe by Ni seems to occur. The presence of smectites with ~ 9% NiO and nikelliferous talc is responsible for anomalous ore grades of about 5% NiO. In nortronites, Ni occurs in the octahedral layer in domains which alternate the ferriferous domains. The Ni-rich smectites and chlorites play an important role in determining ore grades. In the V2 body in which chlorite is more abundant, the oxide ore is richer than in V1. The mean grade (1.2% NiO) of oxide ore is less than the concentrations in Nibearing phases as a result of the dilution effect caused by opaque minerals and silicified microbodies in the goethite plasma mass, which do not contain Ni. The most interesting point about the Vermelho Ni deposits, compared to other deposits of similar type, resides in the presence of a Ni -bering mineral - the nickeliferous chlorite - other than goethite in the oxide ore.
|
4 |
Cristaloquímica dos minerais do lateritico de niquel: o exemplo do vermelho, Serra dos Carajas (PA) / not availableMaria Luiza Melchert de Carvalho e Silva 24 June 1994 (has links)
Nos depósitos lateríticos de níquel, em função das condições morfoclimáticas e estruturais que reinaram durante o período de desenvolvimento do perfil de alteração, o níquel pode estar associado a várias fases minerais, de tal forma que importantes diferenças na composição do minério são registradas, tanto dentro de um mesmo depósito, quanto entre depósitos de diferentes regiões. A alteração intempérica dos dois corpos de rochas ultramáficas (V1 e V2) do Vermelho, serra dos Carajás (PA) levou à formação de um depósito laterítico de níquel com teores médios da ordem de 1,2% a 1,8%Ni, de acordo com os cálculos de reservas efetuados pela Rio Doce Geologia e Mineração S/A - DOCEGEO. Dois tipos de minério foram definidos para este depósito: o minério silicatado, constituído principalmente por serpentinas acompanhadas por cloritas, esmectitas, opacos e quartzo em menor proporção, com teores médios mais elevados, e o minério oxidado, onde a goethita é o mineral predominante e podem ocorrer também, esmectitas, cloritas, quartzo e opacos. No entanto, como é habitual neste tipo de perfil, estes teores não são devidos a minerais neoformados de níquel. Os teores médios são, portanto, resultado da presença do níquel em uma ou várias das fases minerais presentes no minério. Neste trabalho, amostras provenientes de alguns poços de pesquisa abertos pela DOCEGEO, tanto no corpo V1 quanto no corpo V2, foram estudadas detalhadamente, após descrição petrográfica, com auxilio de técnicas como difração de raios X (DRX), microscopia eletrônica de varredura e de transmissão (MEV-MET), microssonda eletrônica (ME), espectroscopia do infravermelho (IV), espectroscopia Mössbauer. Com base nos dados de composição química e mineralógica, as amostras foram classificadas em três tipos: rocha fresca a parcialmente alterada, minério silicatado e minério oxidado. Na rocha fresca, os teores médios de níquel situam-se em torno de 0,3%NiO e o níquel está presente nas serpentinas, cloritas e flogopitas, em teores da mesma ordem. No minério silicatado, o níquel está igualmente distribuído nas serpentinas, que são nos minerais mais abundantes, e nas cloritas e, em menor quantidade, ocorre nos produtos amorfos e goethita que começam a se formar neste nível. Os silicatos, de origem hipógena se enriquecem incorporando o níquel liberado durante as transformações minerais que se processam nos níveis superiores do perfil de alteração, chegando a teores da ordem de 2-3%NiO. Nas demais fases minerais os teores são da ordem de 1,5%. No minério oxidado, a serpentina desaparece e o níquel associa-se à goethita e às cloritas. Quando ocorrem bolsões de quartzo neste nível, as esmectitas e o talco mal cristalizado associados são também portadores de níquel. As cloritas do minério oxidado, que chegam a conter até 15% de NiO, constituem a fase mineral que mais concentra níquel, o qual situa-se, principalmente, na camada brucítica, em substituição ao Mg. No entanto, apesar de apresentar teores bem mais baixos (1,5%), a principal fase mineral portadora de níquel é a goethita, por ser o mineral mais abundante. Indicações de substituição diadóquica de Fe pelo Ni nestes minerais foram obtidas através de estudos de detalhe. As esmectitas, com cerca de 9% de NiO, e o talco niquelífero são minerais que, quando presentes, causam um aumento do teor médio de níquel do minério oxidado que chega a valores anômalos da ordem de 5%NiO. Nas esmectitas, do tipo nontronitas, o níquel encontra-se na camada octaédrica, distribuído em domínios alternados e domínios ferríferos. Devido à alta concentração de níquel nas cloritas e nas esmectitas, esses minerais têm um papel importante na composição do teor médio do minério nos níveis onde estão presentes. No corpo V2, onde as cloritas são mais abundantes, o minério oxidado possui teores de níquel mais elevados do que no corpo V1. O teor médio no minério oxidado, de 1,2%Nio, é inferior aos teores das fases portadoras de níquel, cloritas e goethita. Essa diluição é devida à presença de opacos e microssilicificações no plasma goethítico que não contém níquel. A originalidade do depósito de níquel do Vermelho está, ao contrário do estabelecido para os demais depósitos deste tipo, na presença, no minério oxidado, de outra fase mineral além da goethita como concentradora de níquel, as cloritas niquelíferas. / Weathering of two ultramafic bodies (V1 and V2) of the Vermelho sector of the Serra dos Carajás (PA) led to the formation of lateritic nickel deposit with mean Ni contents of about 1.2% and 1.8%, according to reserves calculations by Rio Doce Geologia e Mineração S/A- DOCEGEO. Two ore types were defined for this sector: the silicate ore, richer in Ni, is mainly composed of serpentine accompanied by chlorite, smectite, opaque minerals and a lower quartz content; and the oxide ore in which goethite is the main mineral, but in which smectite, chlorite, quartz and opaque minerals are also found. On the other hand, as is common in this type of situation, the nickel concentrations are not due to the presence of newly-formed nickel minerals, but to its presence in one or other of the major minerals of the ore. In this study, samples from DOCEGEO prospection pits opened in the V1 and V2 bodies were subjected to detailed study, including initial petrographic examinations followed by X-ray diffraction, scanning and transmission electron microscopy, electron microprobe and Fourier transform infrared and Mossbauer spectrometry studies. The chemical and mineralogical compositions allow the samples to be classified in three types: fresh to partially altered rock, silicate ore and oxide ore. In fresh rock, mean Ni concentrations are around 0.3% NiO, and Ni is present in serpentite, chlorite and phlogopite, in which the concentrations are of roughly the same order. In the silicate ore, Ni is equally distributed between serpentine - the most abundant mineral - and chlorite, and occurs in lesser quantity in amorphous products and goethite, which being to appear in this ore type. The hypogene silicates become enriched in Ni by incorporation of Ni liberated during the mineral transformations which occur in the upper levels of the alteration profiles. These silicates contain 2-3% NiO, while other phases present contain about 1.5% NiO. In the oxide ore, serpentine dissappears and Ni becomes associated with goethite and chlorite. Where quartz lenses are found, smectites and poorly crystallized talc also contain Ni. Chlorites of the oxide ore contain up to 15% NiO, which substitutes Mg in the brucite layer. Nevertheless, even though its Ni content is much less (1.5% NiO), the most important Ni-bearing phase is goethite, the most abundant mineral. Diadochic substitution of Fe by Ni seems to occur. The presence of smectites with ~ 9% NiO and nikelliferous talc is responsible for anomalous ore grades of about 5% NiO. In nortronites, Ni occurs in the octahedral layer in domains which alternate the ferriferous domains. The Ni-rich smectites and chlorites play an important role in determining ore grades. In the V2 body in which chlorite is more abundant, the oxide ore is richer than in V1. The mean grade (1.2% NiO) of oxide ore is less than the concentrations in Nibearing phases as a result of the dilution effect caused by opaque minerals and silicified microbodies in the goethite plasma mass, which do not contain Ni. The most interesting point about the Vermelho Ni deposits, compared to other deposits of similar type, resides in the presence of a Ni -bering mineral - the nickeliferous chlorite - other than goethite in the oxide ore.
|
5 |
Estudo cristaloquímico de minerais do grupo do pirocloro no Brasil / Crystallochemistry study of pyrochlore group minerals from BrazilAndrade, Marcelo Barbosa de 18 June 2007 (has links)
Os minerais do grupo do pirocloro (A2B2X6Y1) apresentam grande interesse econômico, principalmente como fonte de nióbio e tântalo, metais que possuem importantes aplicações tecnológicas como a fabricação de aço e a confecção de componentes eletrônicos. Apesar de seu interesse científico e econômico, a maioria das ocorrências brasileiras de minerais do grupo do pirocloro está apenas parcialmente caracterizada ou não dispõe de nenhum estudo mineralógico. Adicionalmente, o atual sistema de classificação dos minerais do grupo do pirocloro, apesar de aprovado pela IMA, não segue as regras gerais de nomenclatura de minerais da própria IMA. Na posição A, não há diferenciação na ocupação por Ca e por Na, e se um ou mais cátions diferentes de Na ou Ca compuserem mais de 20 % total de átomos na posição A, então a espécie é nomeada pelo átomo mais abundante em A (exceto Na e Ca). Por outro lado, a espécie fluornatromicrolita foi aprovada com base na predominância de Na na posição A. Com relação à ocupação da posição B, a divisão entre os grupos não é feita com uma classificação tripartite: as espécies com Nb + Ta >2Ti e Nb > Ta são consideradas como do subgrupo do pirocloro; se Nb + Ta > 2Ti e Ta ≥ Nb, o mineral irá pertencer ao subgrupo da microlita; e se 2Ti ≥ Nb + Ta, o mineral irá pertencer ao subgrupo da betafita. Espécies isoestruturais com outros cátions predominantes na posição B não são incluídas no grupo do pirocloro (por exemplo, romeíta com Sb dominante). Os ânions não são levados em consideração na classificação, mas o flúor foi usado na aprovação da espécie fluornatromicrolita. Neste trabalho, são apresentados novos esquemas de nomenclatura para os minerais do grupo do pirocloro, que levam em consideração os íons ocupantes das posições A, B e Y. Os prefixos são sempre escritos por extenso (\'hidroxi\', \'fluor\', \'calcio\', \'natro\' etc), enquanto os sufixos são representados por símbolos químicos (Na, F, H2O etc) ou por [] (vazio). Os nomes raízes relacionam-se aos cátions predominantes na posição B, levando a termos como pirocloro, microlita, betafita e romeíta. São apresentados novos dados químicos por MEV-EDS e WDS (incluindo análises de Si, normalmente negligenciado na maioria dos dados da literatura). Foram analisados minerais de seis ocorrências em pegmatitos e uma em carbonatito. Os resultados obtidos permitem separar as espécies em três \'famílias\'. A primeira delas poderia ser denominada \'microlita\', envolvendo fluornatromicrolita, fluorcalciomicrolita, oxinatromicrolita e oxicalciomicrolita. Esta família foi identificada nas ocorrências da lavra do Morro Redondo, Coronel Murta, MG; lavra do Jonas, Conselheiro Pena, MG; mina Quixabá, Frei Martinho, PB; Pegmatito Volta Grande, Nazareno, MG; lavra do Ipê, Marilac, MG; e Pegmatito Ponte da Raiz, Santa Maria de Itabira, MG. A primeira das espécies, fluornatromicrolita, parece ser bem mais comum do que se imaginava, tendo sido descrita previamente no Brasil apenas em Quixabá, e agora verificada em diversas das ocorrências estudadas nesta tese. Apesar de usados os prefixos natro e cálcio, todas as amostras parecem tender para um termo de fórmula final (NaCa)Ta2O6F, ou seja, com Na=Ca em apfu, que poderia ser denominado, por exemplo, fluormicrolita-NaCa ou CaNa. O oxigênio é, algumas vezes, superior ao flúor (em apfu) na cavidade Y, dando origem a espécie oxi-. A segunda família poderia ser denominada \'hidromicrolita\', tendendo a [ [](H2O)]Ta2O6(H2O). Esta fórmula, entretanto, não é eletricamente neutra, necessitando que na cavidade A, (H2O) seja parcialmente substituído por cátions (Ba, U etc), ao mesmo tempo que parte do O da posição X seja substituído por (OH). Minerais desta família foram verificados no Pegmatito Volta Grande, Nazareno, MG. A terceira família, do \'pirocloro\', verificada apenas no carbonatito da mina Jacupiranga, Cajati, SP, inclui as espécies fluorcalciopirocloro e oxicalciopirocloro. Os novos nomes sugeridos parecem discriminar melhor as espécies, com base em cátions, vazios ou H2O predominantes nas posições A, B eY, permitindo inclusive uni-las em \'famílias\'. Esta nova nomenclatura apresenta também como vantagem não dar ênfase a componentes menores da cavidade A, bem como verificar nela a predominância de Ca ou Na. Adicionalmente, os cátions Ta, Nb e Ti passam a ter a mesma importância na cavidade B. Por outro lado são criados nomes \'exóticos\', como hidrohidromicrolita, ou \'impronunciáveis\', como hidro-[]-microlita. / Pyrochlore group minerals are important sources of niobium and tantalum and these metals are used in important technological applications such as steel manufacturing and eletronic components development. However, the majority of Brazilian occurrences are only partially characterized or there is no mineralogic study available. In addition, the official pyrochlore-group minerals classification system does not follow the IMA mineralogical nomenclature rules although this system is approved by IMA. In the A site, it does not differentiate between occupation by Ca and Na, and if there is one or more cation other than Na or Ca composing more than 20% of total A-atoms, then the species must be named according to the most abundant A-atom, other than Na or Ca. In spite of this, the species fluornatromicrolite was approved based on the predominance of Na in the A-site. Regarding the B-site occupation, the division among the subgroups is not made with a tripartite symmetrical classification: the species with Nb + Ta >2Ti and Nb > Ta are considered as pyrochlore subgroup minerals; if Nb + Ta > 2Ti and Ta ≥ Nb, the mineral will belong to the microlite subgroup; and if 2Ti ≥ Nb + Ta, the mineral will belong to the betafite subgroup. Isostructural species with other predominant cations in the B-site are not included in the pyrochlore-group (for example, romeite, with dominant Sb). The anions are not taken into account in the classification but the predominance of fluorine was used for the approval of the species fluornatromicrolite. In this present work new nomenclature schemes, based on the ions in A, B and Y sites, are presented. Prefixes are, for example, \'hidroxi\', \'fluor\', \'calcio\', \'natro\' etc., while sufixes are represented by chemical symbols (Na, F, H2O etc) or [] (vacancies). The root names (pyrochlore, microlite, betafite, romeite) are related to the dominant-constituent cations in the B position. New chemical data by MEV-EDS and WDS (including Si analysis, hardly ever mentioned in litetarature) were obtained. Six occurrences from pegmatites and one from carbonatite were analysed. The results allow the species to be grouped in three \'families\'. The first could be named as \'microlite\', and includies fluornatromicrolite, fluorcalciomicrolite, oxinatromicrolite and oxicalciomicrolite. This family was identified in Morro Redondo quarry, Coronel Murta, MG; Jonas quarry, Conselheiro Pena, MG; Quixabá mine, Frei Martinho, PB; Volta Grande pegmatite, Nazareno, MG; Ipê quarry, Marilac, MG and Ponte da Raiz pegmatite, Santa Maria de Itabira, MG. Fluornatromicrolite seems to be more common than was previously thought. It was previously described only in Quixabá but now many other occurrences are known. Although \'natro\' and \'calcio\' prefixes were used, all the formulae seem to approach the term (NaCa)Ta2O6F. As Na approximately equals Ca (apfu) it could be used the name fluornatromicrolite-Na-Ca or CaNa could be used. The oxigen content is sometimes greater than F content in the Y position. This generates the oxi- species. The second family could be named \'hidromicrolite\', becoming [ [] (H2O)]Ta2O6(H2O). This formulae is not eletrically neutral so the H2O is replaced by cations (Ba, U etc) in the A cavity while the O is replaced by (OH) in the X position. Minerals from this family were identified in the Volta Grande pegmatite, Nazareno, MG. The third family, \'pyrochlore\', was only verified in the Jacupiranga mine, Cajati, SP, including fluorcalciopyrochlore and oxicalciopyrochlore species. The suggested new names, based on cations, vacancies or H2O dominant constituents of A, B and Y sites, seem to better describe the species, allowing their grouping in families. This new nomenclature has the advantage of not emphasize minor constituents in the A cavity, and verify the dominance of Ca or Na. Furthermore, Ta, Nb and Ti cations have the same balance in B cavity. On the other hand, exotic names were created such as hydrohydromicrolite or unpronounceable as hydro-[]-microlite.
|
6 |
Gênese de argilominerais em solos de manguezais brasileiros / Clay minerals genesis in Brazilian mangrove soilsAndrade, Gabriel Ramatis Pugliese 12 February 2015 (has links)
Argilominerais são componentes abundantes nas frações < 2 μm solos, com grande papel no controle de processos geoquímicos e de formação de solos. Nos manguezais brasileiros, apesar das caracterizações gerais já realizadas, há ausência de estudos cristaloquímicos detalhados que possam evidenciar mecanismos de formação/transformação envolvendo essas fases. Este trabalho se propõe, através de dois estudos comparativos, aprofundar a caracterização cristaloqímica das frações 2-0,2 μm e < 0,2 μm, sugerir processos de transformação envolvendo os argilominerais dos manguezais e entender quais atributos ambientais estão associados a essas transformações. Esta caracterização se baseia nas técnicas de modelagem de DRX, decomposição de picos 060 de padrões não-orientados de DRX, FTIR, espectroscopia Mössbauer, análises térmicas, análise química da água intersticial e modelagem geoquímica dos componentes químicos em solução. Os resultados, que serão detalhados nos capítulos 2 e 3, sugerem uma série de transformações minerais, via fases interestratificadas, que devem ter importantes implicações para a compreensão dos processos pedogenéticos envolvendo argilominerais, do seu papel no ciclo biogeoquímico dos elementos associados à sua gênese e relação indireta ou direta com componentes bióticos do ecossistema, que podem influenciar nas transformações que envolvem os minerais. / Clay minerals are ubiquitous components in < 2 μm size fraction of soils, having an important role in the control of geochemical processes and soil genesis. Despite of the general characterizations performed in Brazilian mangroves soils there is a lack of a detailed crystal chemical study able to evidence mechanisms of formation/transformation of such minerals. This study aims (by two different comparative works) to enhance the crystal chemical characterization of mineral phases in the 2-0,2 μm and < 0,2 μm size fractions of mangrove soils, suggesting the existence of mineral transformation involving clay phases and comprehending what environmental settings are related to these transformations. This characterization is based on XRD modelling of oriented patterns, peak fitting of 060 peaks in randomly XRD patterns, Mössbauer spectroscopy, thermal analysis, chemical analysis of soil pore water and geochemical modelling of inorganic soluble compounds. The results, which are described in chapters 2 and 3 indicate a sequence of mineral transformations, via mixed-layered clays, which may have important consequences for the comprehension of soil genesis processes involving clay minerals, their role in the biogeochemical cycles of structural elements of clays and a straight relationship with biotic components of mangrove ecosystem.
|
7 |
Gênese de argilominerais em solos de manguezais brasileiros / Clay minerals genesis in Brazilian mangrove soilsGabriel Ramatis Pugliese Andrade 12 February 2015 (has links)
Argilominerais são componentes abundantes nas frações < 2 μm solos, com grande papel no controle de processos geoquímicos e de formação de solos. Nos manguezais brasileiros, apesar das caracterizações gerais já realizadas, há ausência de estudos cristaloquímicos detalhados que possam evidenciar mecanismos de formação/transformação envolvendo essas fases. Este trabalho se propõe, através de dois estudos comparativos, aprofundar a caracterização cristaloqímica das frações 2-0,2 μm e < 0,2 μm, sugerir processos de transformação envolvendo os argilominerais dos manguezais e entender quais atributos ambientais estão associados a essas transformações. Esta caracterização se baseia nas técnicas de modelagem de DRX, decomposição de picos 060 de padrões não-orientados de DRX, FTIR, espectroscopia Mössbauer, análises térmicas, análise química da água intersticial e modelagem geoquímica dos componentes químicos em solução. Os resultados, que serão detalhados nos capítulos 2 e 3, sugerem uma série de transformações minerais, via fases interestratificadas, que devem ter importantes implicações para a compreensão dos processos pedogenéticos envolvendo argilominerais, do seu papel no ciclo biogeoquímico dos elementos associados à sua gênese e relação indireta ou direta com componentes bióticos do ecossistema, que podem influenciar nas transformações que envolvem os minerais. / Clay minerals are ubiquitous components in < 2 μm size fraction of soils, having an important role in the control of geochemical processes and soil genesis. Despite of the general characterizations performed in Brazilian mangroves soils there is a lack of a detailed crystal chemical study able to evidence mechanisms of formation/transformation of such minerals. This study aims (by two different comparative works) to enhance the crystal chemical characterization of mineral phases in the 2-0,2 μm and < 0,2 μm size fractions of mangrove soils, suggesting the existence of mineral transformation involving clay phases and comprehending what environmental settings are related to these transformations. This characterization is based on XRD modelling of oriented patterns, peak fitting of 060 peaks in randomly XRD patterns, Mössbauer spectroscopy, thermal analysis, chemical analysis of soil pore water and geochemical modelling of inorganic soluble compounds. The results, which are described in chapters 2 and 3 indicate a sequence of mineral transformations, via mixed-layered clays, which may have important consequences for the comprehension of soil genesis processes involving clay minerals, their role in the biogeochemical cycles of structural elements of clays and a straight relationship with biotic components of mangrove ecosystem.
|
8 |
Estudo cristaloquímico de minerais do grupo do pirocloro no Brasil / Crystallochemistry study of pyrochlore group minerals from BrazilMarcelo Barbosa de Andrade 18 June 2007 (has links)
Os minerais do grupo do pirocloro (A2B2X6Y1) apresentam grande interesse econômico, principalmente como fonte de nióbio e tântalo, metais que possuem importantes aplicações tecnológicas como a fabricação de aço e a confecção de componentes eletrônicos. Apesar de seu interesse científico e econômico, a maioria das ocorrências brasileiras de minerais do grupo do pirocloro está apenas parcialmente caracterizada ou não dispõe de nenhum estudo mineralógico. Adicionalmente, o atual sistema de classificação dos minerais do grupo do pirocloro, apesar de aprovado pela IMA, não segue as regras gerais de nomenclatura de minerais da própria IMA. Na posição A, não há diferenciação na ocupação por Ca e por Na, e se um ou mais cátions diferentes de Na ou Ca compuserem mais de 20 % total de átomos na posição A, então a espécie é nomeada pelo átomo mais abundante em A (exceto Na e Ca). Por outro lado, a espécie fluornatromicrolita foi aprovada com base na predominância de Na na posição A. Com relação à ocupação da posição B, a divisão entre os grupos não é feita com uma classificação tripartite: as espécies com Nb + Ta >2Ti e Nb > Ta são consideradas como do subgrupo do pirocloro; se Nb + Ta > 2Ti e Ta ≥ Nb, o mineral irá pertencer ao subgrupo da microlita; e se 2Ti ≥ Nb + Ta, o mineral irá pertencer ao subgrupo da betafita. Espécies isoestruturais com outros cátions predominantes na posição B não são incluídas no grupo do pirocloro (por exemplo, romeíta com Sb dominante). Os ânions não são levados em consideração na classificação, mas o flúor foi usado na aprovação da espécie fluornatromicrolita. Neste trabalho, são apresentados novos esquemas de nomenclatura para os minerais do grupo do pirocloro, que levam em consideração os íons ocupantes das posições A, B e Y. Os prefixos são sempre escritos por extenso (\'hidroxi\', \'fluor\', \'calcio\', \'natro\' etc), enquanto os sufixos são representados por símbolos químicos (Na, F, H2O etc) ou por [] (vazio). Os nomes raízes relacionam-se aos cátions predominantes na posição B, levando a termos como pirocloro, microlita, betafita e romeíta. São apresentados novos dados químicos por MEV-EDS e WDS (incluindo análises de Si, normalmente negligenciado na maioria dos dados da literatura). Foram analisados minerais de seis ocorrências em pegmatitos e uma em carbonatito. Os resultados obtidos permitem separar as espécies em três \'famílias\'. A primeira delas poderia ser denominada \'microlita\', envolvendo fluornatromicrolita, fluorcalciomicrolita, oxinatromicrolita e oxicalciomicrolita. Esta família foi identificada nas ocorrências da lavra do Morro Redondo, Coronel Murta, MG; lavra do Jonas, Conselheiro Pena, MG; mina Quixabá, Frei Martinho, PB; Pegmatito Volta Grande, Nazareno, MG; lavra do Ipê, Marilac, MG; e Pegmatito Ponte da Raiz, Santa Maria de Itabira, MG. A primeira das espécies, fluornatromicrolita, parece ser bem mais comum do que se imaginava, tendo sido descrita previamente no Brasil apenas em Quixabá, e agora verificada em diversas das ocorrências estudadas nesta tese. Apesar de usados os prefixos natro e cálcio, todas as amostras parecem tender para um termo de fórmula final (NaCa)Ta2O6F, ou seja, com Na=Ca em apfu, que poderia ser denominado, por exemplo, fluormicrolita-NaCa ou CaNa. O oxigênio é, algumas vezes, superior ao flúor (em apfu) na cavidade Y, dando origem a espécie oxi-. A segunda família poderia ser denominada \'hidromicrolita\', tendendo a [ [](H2O)]Ta2O6(H2O). Esta fórmula, entretanto, não é eletricamente neutra, necessitando que na cavidade A, (H2O) seja parcialmente substituído por cátions (Ba, U etc), ao mesmo tempo que parte do O da posição X seja substituído por (OH). Minerais desta família foram verificados no Pegmatito Volta Grande, Nazareno, MG. A terceira família, do \'pirocloro\', verificada apenas no carbonatito da mina Jacupiranga, Cajati, SP, inclui as espécies fluorcalciopirocloro e oxicalciopirocloro. Os novos nomes sugeridos parecem discriminar melhor as espécies, com base em cátions, vazios ou H2O predominantes nas posições A, B eY, permitindo inclusive uni-las em \'famílias\'. Esta nova nomenclatura apresenta também como vantagem não dar ênfase a componentes menores da cavidade A, bem como verificar nela a predominância de Ca ou Na. Adicionalmente, os cátions Ta, Nb e Ti passam a ter a mesma importância na cavidade B. Por outro lado são criados nomes \'exóticos\', como hidrohidromicrolita, ou \'impronunciáveis\', como hidro-[]-microlita. / Pyrochlore group minerals are important sources of niobium and tantalum and these metals are used in important technological applications such as steel manufacturing and eletronic components development. However, the majority of Brazilian occurrences are only partially characterized or there is no mineralogic study available. In addition, the official pyrochlore-group minerals classification system does not follow the IMA mineralogical nomenclature rules although this system is approved by IMA. In the A site, it does not differentiate between occupation by Ca and Na, and if there is one or more cation other than Na or Ca composing more than 20% of total A-atoms, then the species must be named according to the most abundant A-atom, other than Na or Ca. In spite of this, the species fluornatromicrolite was approved based on the predominance of Na in the A-site. Regarding the B-site occupation, the division among the subgroups is not made with a tripartite symmetrical classification: the species with Nb + Ta >2Ti and Nb > Ta are considered as pyrochlore subgroup minerals; if Nb + Ta > 2Ti and Ta ≥ Nb, the mineral will belong to the microlite subgroup; and if 2Ti ≥ Nb + Ta, the mineral will belong to the betafite subgroup. Isostructural species with other predominant cations in the B-site are not included in the pyrochlore-group (for example, romeite, with dominant Sb). The anions are not taken into account in the classification but the predominance of fluorine was used for the approval of the species fluornatromicrolite. In this present work new nomenclature schemes, based on the ions in A, B and Y sites, are presented. Prefixes are, for example, \'hidroxi\', \'fluor\', \'calcio\', \'natro\' etc., while sufixes are represented by chemical symbols (Na, F, H2O etc) or [] (vacancies). The root names (pyrochlore, microlite, betafite, romeite) are related to the dominant-constituent cations in the B position. New chemical data by MEV-EDS and WDS (including Si analysis, hardly ever mentioned in litetarature) were obtained. Six occurrences from pegmatites and one from carbonatite were analysed. The results allow the species to be grouped in three \'families\'. The first could be named as \'microlite\', and includies fluornatromicrolite, fluorcalciomicrolite, oxinatromicrolite and oxicalciomicrolite. This family was identified in Morro Redondo quarry, Coronel Murta, MG; Jonas quarry, Conselheiro Pena, MG; Quixabá mine, Frei Martinho, PB; Volta Grande pegmatite, Nazareno, MG; Ipê quarry, Marilac, MG and Ponte da Raiz pegmatite, Santa Maria de Itabira, MG. Fluornatromicrolite seems to be more common than was previously thought. It was previously described only in Quixabá but now many other occurrences are known. Although \'natro\' and \'calcio\' prefixes were used, all the formulae seem to approach the term (NaCa)Ta2O6F. As Na approximately equals Ca (apfu) it could be used the name fluornatromicrolite-Na-Ca or CaNa could be used. The oxigen content is sometimes greater than F content in the Y position. This generates the oxi- species. The second family could be named \'hidromicrolite\', becoming [ [] (H2O)]Ta2O6(H2O). This formulae is not eletrically neutral so the H2O is replaced by cations (Ba, U etc) in the A cavity while the O is replaced by (OH) in the X position. Minerals from this family were identified in the Volta Grande pegmatite, Nazareno, MG. The third family, \'pyrochlore\', was only verified in the Jacupiranga mine, Cajati, SP, including fluorcalciopyrochlore and oxicalciopyrochlore species. The suggested new names, based on cations, vacancies or H2O dominant constituents of A, B and Y sites, seem to better describe the species, allowing their grouping in families. This new nomenclature has the advantage of not emphasize minor constituents in the A cavity, and verify the dominance of Ca or Na. Furthermore, Ta, Nb and Ti cations have the same balance in B cavity. On the other hand, exotic names were created such as hydrohydromicrolite or unpronounceable as hydro-[]-microlite.
|
Page generated in 0.0886 seconds