• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Population delineation and wintering ground influence on vital rates of white-winged scoters

Swoboda, Cindy Jean 03 May 2007
North American populations of white-winged scoters (<i>Melanitta fusca deglandi</i>) have declined markedly over the past several decades. The causes for decline are uncertain, but likely involve a complexity of events occurring on wintering and breeding areas. To gain insight into potential cross-seasonal effects, I delineated Atlantic and Pacific wintering scoter populations and linked them to a shared breeding area using stable isotope analysis of carbon (δ13C) and nitrogen (δ15N) ratios in feathers. By applying this methodology to a marked breeding population at Redberry Lake, Saskatchewan, I assigned females to putative wintering areas and determined: (1) population structure; (2) the extent of winter site philopatry; and, (3) differences in vital rates and other variates in relation to winter origin. Discriminant function analysis of isotopic ratios in feather samples from known wintering locations resulted in classification probabilities of 96% (<i>n</i> = 149) for Pacific and 78% (<i>n</i> = 32) for Atlantic wintering scoters. Using this methodology, I determined that the Redberry Lake breeding population is comprised of approximately 75% Pacific and 25% Atlantic wintering birds, and its members exhibit high degrees of winter region philopatry based on the classification of successive recaptures over three field seasons. Annual variations in population structure, as well as differences in nest initiation dates and blood contaminant loads in relation to winter area suggest seasonal interactions may influence survival and reproductive success of this population. To gain insight into potential seasonal interactions, I examined nest success and female survival in relation to winter area. No significant differences in nest success in relation to winter area were found, but nests that failed before mid-incubation were not sampled. Adult female survival rate for 2000-2004 was estimated as 0.85, with no significant difference detected between wintering areas. This study demonstrated that it is important to link breeding and wintering areas to better understand the factors influencing population dynamics and to effectively address conservation issues.
2

Population delineation and wintering ground influence on vital rates of white-winged scoters

Swoboda, Cindy Jean 03 May 2007 (has links)
North American populations of white-winged scoters (<i>Melanitta fusca deglandi</i>) have declined markedly over the past several decades. The causes for decline are uncertain, but likely involve a complexity of events occurring on wintering and breeding areas. To gain insight into potential cross-seasonal effects, I delineated Atlantic and Pacific wintering scoter populations and linked them to a shared breeding area using stable isotope analysis of carbon (δ13C) and nitrogen (δ15N) ratios in feathers. By applying this methodology to a marked breeding population at Redberry Lake, Saskatchewan, I assigned females to putative wintering areas and determined: (1) population structure; (2) the extent of winter site philopatry; and, (3) differences in vital rates and other variates in relation to winter origin. Discriminant function analysis of isotopic ratios in feather samples from known wintering locations resulted in classification probabilities of 96% (<i>n</i> = 149) for Pacific and 78% (<i>n</i> = 32) for Atlantic wintering scoters. Using this methodology, I determined that the Redberry Lake breeding population is comprised of approximately 75% Pacific and 25% Atlantic wintering birds, and its members exhibit high degrees of winter region philopatry based on the classification of successive recaptures over three field seasons. Annual variations in population structure, as well as differences in nest initiation dates and blood contaminant loads in relation to winter area suggest seasonal interactions may influence survival and reproductive success of this population. To gain insight into potential seasonal interactions, I examined nest success and female survival in relation to winter area. No significant differences in nest success in relation to winter area were found, but nests that failed before mid-incubation were not sampled. Adult female survival rate for 2000-2004 was estimated as 0.85, with no significant difference detected between wintering areas. This study demonstrated that it is important to link breeding and wintering areas to better understand the factors influencing population dynamics and to effectively address conservation issues.

Page generated in 0.0701 seconds