• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The emulsifying properties of Cruciferin-rich and Napin-rich protein isolates from Brassica napus L.

2013 December 1900 (has links)
The influence of pH (3.0, 5.0 and 7.0) and ionic strength (0, 50 and 100 mM NaCl) on the physicochemical and emulsifying properties of cruciferin-rich (CPI) and napin-rich (NPI) protein isolates were examined. Specifically, the surface characteristics (charge and hydrophobicity), solubility, interfacial tension and emulsifying activity (EAI) and stability (ESI) indices were measured. In the case of the cruciferin-rich protein isolate, surface charge was found to be negatively and positively charged at pHs above and below its isoelectric point (~4.6-4.8), respectively, ranging in potential from -33 mV at pH 8.0 to +33 mV at pH 3.0. In the presence of NaCl, the overall magnitude of charge became reduced at all pHs. In contrast, hydrophobicity, solubility and the ability for CPI to reduce interfacial tension all were found to be dependent upon both pH and NaCl concentration. Solubility was found to be lowest at pH 5.0 (~11%) and 7.0 (16%) for CPI without salt, but was significantly improved with the addition of NaCl (>80%). Interfacial tension was found to be lowest (10-11 mN/m) for pH 5.0 – 0 mM NaCl and pH 7.0 – 50/100 mM NaCl. Overall, the presence of salt reduced EAI with increasing levels of NaCl at pH 5.0 and 7.0, but not at pH 3.0. In contrast, ESI became reduced with the addition of NaCl (regardless of the concentration) from ~15.7 min at 0 mM NaCl to ~12 min with 50/100 mM NaCl, from ~14.7 min at 0 mM NaCl to ~11.5 min with 50/100 mM NaCl and from 15.1 min at 0 mM NaCl to ~11.7 min with 50/100 mM NaCl for pH 3.0, 5.0 and 7.0, respectively. ESI also was found to be unaffected by pH. In the case of a napin-rich protein isolate, surface charge for the NPI in the absence of NaCl ranged between ~ +10 mV to ~ -5 mV depending on the pH, becoming electrically neutral at pH 6.6. The addition of NaCl acted to reduce the surface charge on the NPI and caused a shift in its isoelectric point to pH 3.5 and 3.9 for the 50 and 100 mM NaCl levels, respectively. Overall, surface hydrophobicity for the NPI was reduced as the pH increased, whereas as NaCl levels were raised the hydrophobicity declined. In contrast, NPI solubility was found to be high (~93-100%) regardless of the solvent conditions. The ability of NPI to reduce interfacial tension was enhanced at higher pHs, however the effect of NaCl was pH dependent. Overall, EAI values were similar in magnitude at pH 3.0 and 5.0, and lower at pH 7.0. The effect of NaCl on EAI was similar at pH 3.0 and 7.0, where EAI at the 0 mM and 100 mM NaCl levels were similar in magnitude, but increased significantly at 50 mM NaCl. However, the EAI values at pH 5.0 were reduced as the level of NaCl increased. Overall, the stability of NPI-stabilized emulsions degraded rapidly and the addition of salt induced faster emulsion instability. In summary, CPI and NPI were very different in terms of their physicochemical properties. However, the emulsifying properties were similar in magnitude indicating that they had similar emulsifying potential under the solvent conditions examined.
2

STRUCTURE AND PROPERTIES OF CRUCIFERIN: INVESTIGATION OF HOMOHEXAMERIC CRUCIFERIN EXPRESSED IN ARABIDOPSIS

2013 June 1900 (has links)
The structure of 11S cruciferin has been solved; however, how the individual subunits contribute to its physico-chemical and functional properties are not well known. The cruciferin isoforms in Arabidopsis thaliana, CRUA, CRUB, and CRUC, were investigated with respect to their molecular structures and the relationship of structural features to the physico-chemical and functional properties of cruciferin using homology modeling and various analytical techniques. Comparison of these models revealed that hydrophobicity and electrostatic potential distribution on the surface of the CRUC homotrimer had more favorable interfacial, solubility, and thermal properties than those of CRUA or CRUB. Flavor binding and pepsin digestion were associated with hypervariable regions (HVRs) and center core regions, respectively, moreso for CRUA and CRUB homotrimers than for CRUC. Chemical imaging of a single cell area in wild type (WT) and double-knockout seeds (CRUAbc, CRUaBc, and CRUabC) using synchrotron FT-IR microscopy (amide I band, 1650 cm-1, νC=O) showed that seed storage proteins were concentrated in the cell center and protein storage vacuoles, whereas lipids were closer to the cell wall. Secondary structure components of proteins of double-knockout lines did not show major differences. Changes in protein secondary structure components of pepsin-treated CRUabC (CRUC) mutant were minimal, indicating low enzyme accessibility. A three-step chromatographic procedure allowed isolation of the hexameric form of cruciferin with high purity (>95%). Fourier transform infrared (FT-IR) and circular dichroism (CD) spectroscopic analysis of the secondary structure of these proteins revealed cruciferins were folded into higher order secondary structures; 44−50% β-sheets and 7−9% α-helices. The relative subunit ratio was approximately 1:3:6 (CRUA:CRUB:CRUC) in the WT cruciferin. The Tm values of purified cruciferin at pH 7.4 (μ = 0.0) were in the order of WT = CRUA = CRUB < CRUC. The order of surface hydrophobicity as determined by ANS (1-anilinonaphthalene-8-sulfonate) probe binding was CRUA > CRUB = WT >> CRUC. Intrinsic fluorescence studies revealed a compact molecular structure for the CRUC homohexamer compared to the CRUA and CRUB homohexamers. The order of emulsion forming abilities was CRUA = CRUB > WT > CRUC (no emulsion formation) and the order of heat-induced network structure strength was WT > CRUA = CRUB > CRUC (no gel formation). The inability of CRUC to form gels or emulsions may be attributed to its low surface hydrophobicity and molecular compactness. At pH 2.0, CRUC hexamers dissociated into trimers which allowed the formation of an O/W emulsion and heat-induced network structures. Solubility of cruciferin as a function of pH at low ionic strength gave two minima around pH 4 and 7.4 yielding a “W” shape solubility profile deviating from the typical “U” or “V” shape solubility profile of other 11S globulins. The high ionic strength (μ = 0.5) was not favorable for emulsification, heat-induced gel formation, or solubilization for all cruciferins. Furthermore, the CRUA and CRUB homohexamers exhibited rapid pepsinolysis, while the CRUC homohexamer and WT heterohexamer were digested more slowly. Although fairly well conserved regions were found in the primary structure of these three cruciferin subunits, differences were found in the hypervariable regions and extended loop regions resulting in slight differences in 3D structures and interactions that occur during association to form superstructures, such as hexamers. These differences were reflected in the physico-chemical and techno-functional properties of hexamers and trimers composed of each subunit. In silico predictions for certain functionalities were highly correlated with empirical data from laboratory experiments.
3

Genetic variation and inheritance of secondary seed dormancy in winter oilseed rape (Brassica napus L.) / Genetische Variation und Vererbung von sekundärer Dormanz bei Samen im Winterraps (Brassica napus L.)

Schatzki, Jörg 31 May 2012 (has links)
No description available.

Page generated in 0.0307 seconds