• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tooling performance in micro milling : modelling, simulation and experimental study

Wu, Tao January 2012 (has links)
With the continuing trend towards miniaturization, micro milling plays an increasingly important role in fabrication of freeform and high-accuracy micro parts or components directly and cost-effectively. The technology is in kinematics scaled down from the conventional milling, however, existing knowledge and experiences are limited and comprehensive studies on the micro tooling performance are essential and much needed particularly for the process planning and optimization. The cutting performance of micro tools is largely dependent on the dynamic performance of machine tools, tooling characteristics, work material properties and process conditions, and the latter three aspects will be focused in the study. The state of the art of micro milling technology with respect to the tooling performance has been critically reviewed, together with modelling work for performance prediction as well as metrology and instrumentation for the performance characterization. A novel 3D finite element method taking into account the geometry of a micro tool, including the tool diameter, rake angle, relief angle, cutting edge radius and helix angle, has been proposed for modelling and simulation of the micro milling process. Validation through well-designed micro milling trials demonstrates that the approach is capable of characterizing the milling process effectively. With the support of FEM simulation developed, the tooling geometrical effects, including those from helix angle, rake angle and cutting edge radius with influences on cutting forces, tool stresses, tool temperatures, milling chip formation and temperatures have been comprehensively studied and compared for potential micro tool design and optimization purposes. In an effort to prolong the tool life and enhance the tooling efficiency, DLC and NCD coatings have been deposited on micro end mills by PE-CVD and HF-CVD processes respectively. Corresponding cutting performance of these coated tools have been assessed and compared with those of WC micro tools in both dry and wet cutting conditions so as for better understanding of the coating influence on micro tools. Furthermore, the cutting characteristics of the DLC coated and uncoated tools have been analysed through verified plane-strain simulations. The effects of coating friction coefficient, coating thickness and UCT have been determined and evaluated by design of simulation method. Mechanical, chemical and physical properties of a work material have a direct influence on its micro-machinability. Five most common engineering materials including Al 6061-T6, C101, AISI 1045, 304 and P20, have been experimentally investigated and their micro milling behaviours in terms of the cutting forces, tool wear, surface roughness, and micro-burr formation have been compared and characterized. Feed rate, cutting speed and axial depth of cut constitute the complete set of process variables and they have significant effects on the tooling performance. Fundamental understanding of their influences is essential for production engineers to determine optimum cutting parameters so as to achieve the maximum extension of the tool life. 3D FE-based simulations have been carried out to predict the process variable effects on the cutting forces, tool stresses, tool temperatures as well as micro milling chip formation and temperatures. Furthermore, experimental approach has been adopted for the surface roughness characterization. Suggestions on selecting practical cutting variables have been provided in light of the results obtained. Conclusions with respect to the holistic investigation on the tooling performance in micro milling have been drawn based on the research objectives achieved. Recommendations for future work have been pointed out particularly for further future research in the research area.
2

TEM and structural investigations of synthesized and modified carbon materials

Lai, Pooi-Fun Unknown Date (has links)
Due to the extreme properties of diamond, such as extreme hardness, high thermal conductivity, high electrical breakdown strength, high electron and hole mobilities and large band gap, it is of interest to study this material in detail. Before advantage can be taken of diamond’s properties for high-temperature, high-power electronic applications successful doping/ion implantation of diamond must be achieved. This requires an understanding of the types of defects produced during ion irradiation. In the present work, type IIa diamond has been irradiated with various doses of 320keV Xe ions at room temperature. Analytical techniques used are electron spin resonance spectroscopy, Raman spectroscopy, transmission electron microscopy and electron energy loss spectroscopy. Previous models have suggested that upon ion impact, amorphous and/or graphitized clusters are formed in diamond, which will overlap at a critical dose to form a semi-continuous graphitized layer. (For complete abstract open document)
3

TEM and structural investigations of synthesized and modified carbon materials

Lai, Pooi-Fun Unknown Date (has links)
Due to the extreme properties of diamond, such as extreme hardness, high thermal conductivity, high electrical breakdown strength, high electron and hole mobilities and large band gap, it is of interest to study this material in detail. Before advantage can be taken of diamond’s properties for high-temperature, high-power electronic applications successful doping/ion implantation of diamond must be achieved. This requires an understanding of the types of defects produced during ion irradiation. In the present work, type IIa diamond has been irradiated with various doses of 320keV Xe ions at room temperature. Analytical techniques used are electron spin resonance spectroscopy, Raman spectroscopy, transmission electron microscopy and electron energy loss spectroscopy. Previous models have suggested that upon ion impact, amorphous and/or graphitized clusters are formed in diamond, which will overlap at a critical dose to form a semi-continuous graphitized layer. (For complete abstract open document)
4

Thin-film piezoelectric-on-substrate resonators and narrowband filters

Abdolvand, Reza 17 January 2008 (has links)
A new class of micromachined devices called thin-film piezoelectric-on-substrate (TPoS) resonators is introduced, and the performance of these devices in RF and sensor applications is studied. TPoS resonators benefit from high electromechanical coupling of piezoelectric transduction mechanism and superior acoustic properties of a substrate such as single crystal silicon. Therefore, the motional impedance of these resonators are significantly smaller compared to typical capacitively-transduced counterparts while they exhibit relatively high quality factor and power handling and can be operated in air. The combination of all these features suggests TPoS resonators as a viable alternative for current acoustic devices. In this thesis, design and fabrication methods to realize dispersed-frequency lateral-extensional TPoS resonators are discussed. TPoS devices are fabricated on both silicon-on-insulator and thin-film nanocrystalline diamond substrates. The performance of these resonators in simple and low-power oscillators is measured and compared. Furthermore, a unique coupling technique for implementation of high frequency filters is introduced in which dual resonance modes of a single resonant structure are coupled. The measured results of this work show that these filters are suitable candidates for single-chip implementation of multiple-frequency narrow-band filters with high out-of-band rejection in a small footprint.
5

Charge Transport in Single-crystalline CVD Diamond

Gabrysch, Markus January 2010 (has links)
Diamond is a semiconductor with many superior material properties such as high breakdown field, high saturation velocity, high carrier mobilities and the highest thermal conductivity of all materials. These extreme properties, as compared to other (wide bandgap) semiconductors, make it desirable to develop single-crystalline epitaxial diamond films for electronic device and detector applications. Future diamond devices, such as power diodes, photoconductive switches and high-frequency field effect transistors, could in principle deliver outstanding performance due to diamond's excellent intrinsic properties. However, such electronic applications put severe demands on the crystalline quality of the material. Many fundamental electronic properties of diamond are still poorly understood, which severely holds back diamond-based electronic device and detector development. This problem is largely due to incomplete knowledge of the defects in the material and due to a lack of understanding of how these defects influence transport properties. Since diamond lacks a shallow dopant that is fully thermally activated at room temperature, the conventional silicon semiconductor technology cannot be transferred to diamond devices; instead, new concepts have to be developed. Some of the more promising device concepts contain thin delta-doped layers with a very high dopant concentration, which are fully activated in conjunction with undoped (intrinsic) layers where charges are transported. Thus, it is crucial to better understand transport in high-quality undoped layers with high carrier mobilities. The focus of this doctoral thesis is therefore the study of charge transport and related electronic properties of single-crystalline plasma-deposited (SC-CVD) diamond samples, in order to improve knowledge on charge creation and transport mechanisms. Fundamental characteristics such as drift mobilities, compensation ratios and average pair-creation energy were measured. Comparing them with theoretical predictions from simulations allows for verification of these models and improvement of the diamond deposition process.

Page generated in 0.091 seconds