• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A fossildiagênese do pacote Meso-Neotriássico do RS

Horn, Bruno Ludovico Dihl January 2013 (has links)
A presente dissertação apresenta um estudo sobre a fossildiagênese da Supersequencia Santa Maria. Esta unidade contém uma grande variedade de vertebrados fósseis, que são conhecidos deste o início do século XX. Muitas vezes a preservação destes fósseis é excelente, mas alguns não seguem esse padrão. Algumas vezes, o processo de crescimento dos minerais permineralizantes pode destruir a forma original dos ossos, o que impede, às vezes, a sua identificação taxonômica precisa. Este trabalho tem como objetivo principal estudar os diferentes tipos de fossilização que ocorrem nos pacotes fossilíferos da Supersequência Santa Maria (Sequências Santa Maria I e II). Para isso, foram realizadas análises petrográficas por microscopia óptica, difração de raios X, refinamento cristalino e por espectroscopia no infravermelho. Em alguns ossos, foram coletadas amostras (para análises geoquímicas) em distintas porções do osso (mais externas e mais internas). Os resultados obtidos possibilitaram estudar as modificações cristaloquímicas e diagenéticas da apatita que compõe os ossos fósseis e compreender a evolução dos processos de fossilização. Através das análises petrográficas, foi possível identificar todas as fases minerais envolvidas nestes processos e estudar as transformações da hidroxiapatita ao longo da diagenênese. As análises possibilitaram identificar calcita, hematita e calcedônia como minerais precipitados durante a fossilização e fluorapatita e carbonato fluorapatita como as variedades de apatita que ocorrem nos ossos. Também foram observadas diferenças nas microfeições de calcita em ossos bem preservados (cristais grandes preenchendo completamente as cavidades internas) e mal preservados (calcita micro espática típica de calcretes freáticos). Com base nos resultados, foram identificados dois padrões, sendo um para Sequencia Santa Maria I e base da Sequencia Santa Maria II e outro para o topo da Sequencia Santa Maria II. No primeiro caso, onde a rocha fossilífera é um pelito depositado em planície de inundação, existem duas variantes: 1) após o soterramento final, o osso não ficar na zona de oscilação de nível freático, acarretando um uma boa preservação e 2) o osso ficar na zona de oscilação de nível freático, recebendo maior aporte de íons e tendo uma probabilidade maior de sofrer alteração volumétrica. Estas duas possibilidades podem sobrepor-se. Já no topo na Sequencia Santa Maria II, a rocha fossilífera é um arenito fino e a preservação se dá pela percolação de íons fora da zona de oscilação do nível freático, implicando em uma boa preservação. O refinamento cristalino mostrou que, durante o processo de fossilização, a apatita sofre mudança nos parâmetros cristalográficos, indicando uma mudança mineralógica causada principalmente pela substituição dos ânions na estrutura cristalina, especialmente incluindo o flúor e o carbonato, íons muito comuns nas águas superficiais. As análises por espectroscopia no infravermelho permitiram constatar a entrada de carbonato e a diminuição de fosfato nas porções mais centrais do osso, que são as mais alteradas. Com isso, se pode concluir que as partes mais centrais dos ossos servem de conduto principal para os fluidos diagenéticos e que a alteração da hidroxiapatita para carbonato apatita ocorre de dentro para fora. / The present master degree thesis presents a study about Santa Maria Supersequence fossildiagenesis. This unit contains a great variety of vertebrate fossils known since the early XX century. In many cases, the fossils are in excellent preservational state, although some of them do not follow this pattern. The process of expansive growth of the permineralizing minerals destroys the original shape of the fossils, which sometimes does not allow an accurate taxonomic identification. This work has as main objective to study the different fossilization patterns that occurs in Santa Maria Sequences I and II. For that, petrographic analyzes were performed by optical microscopy, X-ray diffraction, refinement and crystal infrared spectroscopy. In some bones were collected samples (for geochemical analysis) in different portions of the bone (from bone marrow to the edges). The results made possible to study the crystallochemical and diagenetic modifications of bone apatite in places with distinct preservational states, and understand the evolution of the fossilization processes. Through petrographic analyses were possible to identificate all mineral phases involved in fossilization process and to study hydroxylapatite transformations through fossildiagenetic process. Were identified calcite, hematite and chalcedony as precipited minerals during fossilization besides fluorapatite and carbonate fluorapatite as varieties of bone apatite after fossildiagenesis. Also were observed differences in calcite microfeatures between well preserved bones (big crystals filling all bone cavities) and badly preserved (microspar calcite, typical of phreatic precipitation). Based in these results were recognized two patterns, being one for Santa Maria Sequence I and Santa Maria Sequence II base and another to Santa Maria Sequencie II top. In the first case, the fossiliferous rock is a floodplain mudstone and there are two variables: 1) after the final burial bone stay out of phreatic level, favoring a good preservation and 2) bone stay in phreatic oscillation zone resulting in a bad preservation. These two possibilities may overlap. For Santa Maria Sequence II top the fossiliferous rock is a deltaic massive sandstone and the preservation occurs by ion percolation outside the phreatic oscillation zone, resulting in a good preservation. The crystalline refinement showed that during the fossilization processes bone apatite suffers changes in crystallographic parameters, indicating a mineralogical change due to anion substitution inside crystalline structure, especially floride and carbonate found in any sedimentary environment. Infrared spectroscopy made possible to observe the carbonate entry and the phosphate in the bone marrow. Due this, were concluded that the bone marrow serve as the primary conduit for the diagenetic fluids, and the change of hydroxylapatite for carbonate fluorapatite and fluorapatite occurs from the inside to outside.
2

A fossildiagênese do pacote Meso-Neotriássico do RS

Horn, Bruno Ludovico Dihl January 2013 (has links)
A presente dissertação apresenta um estudo sobre a fossildiagênese da Supersequencia Santa Maria. Esta unidade contém uma grande variedade de vertebrados fósseis, que são conhecidos deste o início do século XX. Muitas vezes a preservação destes fósseis é excelente, mas alguns não seguem esse padrão. Algumas vezes, o processo de crescimento dos minerais permineralizantes pode destruir a forma original dos ossos, o que impede, às vezes, a sua identificação taxonômica precisa. Este trabalho tem como objetivo principal estudar os diferentes tipos de fossilização que ocorrem nos pacotes fossilíferos da Supersequência Santa Maria (Sequências Santa Maria I e II). Para isso, foram realizadas análises petrográficas por microscopia óptica, difração de raios X, refinamento cristalino e por espectroscopia no infravermelho. Em alguns ossos, foram coletadas amostras (para análises geoquímicas) em distintas porções do osso (mais externas e mais internas). Os resultados obtidos possibilitaram estudar as modificações cristaloquímicas e diagenéticas da apatita que compõe os ossos fósseis e compreender a evolução dos processos de fossilização. Através das análises petrográficas, foi possível identificar todas as fases minerais envolvidas nestes processos e estudar as transformações da hidroxiapatita ao longo da diagenênese. As análises possibilitaram identificar calcita, hematita e calcedônia como minerais precipitados durante a fossilização e fluorapatita e carbonato fluorapatita como as variedades de apatita que ocorrem nos ossos. Também foram observadas diferenças nas microfeições de calcita em ossos bem preservados (cristais grandes preenchendo completamente as cavidades internas) e mal preservados (calcita micro espática típica de calcretes freáticos). Com base nos resultados, foram identificados dois padrões, sendo um para Sequencia Santa Maria I e base da Sequencia Santa Maria II e outro para o topo da Sequencia Santa Maria II. No primeiro caso, onde a rocha fossilífera é um pelito depositado em planície de inundação, existem duas variantes: 1) após o soterramento final, o osso não ficar na zona de oscilação de nível freático, acarretando um uma boa preservação e 2) o osso ficar na zona de oscilação de nível freático, recebendo maior aporte de íons e tendo uma probabilidade maior de sofrer alteração volumétrica. Estas duas possibilidades podem sobrepor-se. Já no topo na Sequencia Santa Maria II, a rocha fossilífera é um arenito fino e a preservação se dá pela percolação de íons fora da zona de oscilação do nível freático, implicando em uma boa preservação. O refinamento cristalino mostrou que, durante o processo de fossilização, a apatita sofre mudança nos parâmetros cristalográficos, indicando uma mudança mineralógica causada principalmente pela substituição dos ânions na estrutura cristalina, especialmente incluindo o flúor e o carbonato, íons muito comuns nas águas superficiais. As análises por espectroscopia no infravermelho permitiram constatar a entrada de carbonato e a diminuição de fosfato nas porções mais centrais do osso, que são as mais alteradas. Com isso, se pode concluir que as partes mais centrais dos ossos servem de conduto principal para os fluidos diagenéticos e que a alteração da hidroxiapatita para carbonato apatita ocorre de dentro para fora. / The present master degree thesis presents a study about Santa Maria Supersequence fossildiagenesis. This unit contains a great variety of vertebrate fossils known since the early XX century. In many cases, the fossils are in excellent preservational state, although some of them do not follow this pattern. The process of expansive growth of the permineralizing minerals destroys the original shape of the fossils, which sometimes does not allow an accurate taxonomic identification. This work has as main objective to study the different fossilization patterns that occurs in Santa Maria Sequences I and II. For that, petrographic analyzes were performed by optical microscopy, X-ray diffraction, refinement and crystal infrared spectroscopy. In some bones were collected samples (for geochemical analysis) in different portions of the bone (from bone marrow to the edges). The results made possible to study the crystallochemical and diagenetic modifications of bone apatite in places with distinct preservational states, and understand the evolution of the fossilization processes. Through petrographic analyses were possible to identificate all mineral phases involved in fossilization process and to study hydroxylapatite transformations through fossildiagenetic process. Were identified calcite, hematite and chalcedony as precipited minerals during fossilization besides fluorapatite and carbonate fluorapatite as varieties of bone apatite after fossildiagenesis. Also were observed differences in calcite microfeatures between well preserved bones (big crystals filling all bone cavities) and badly preserved (microspar calcite, typical of phreatic precipitation). Based in these results were recognized two patterns, being one for Santa Maria Sequence I and Santa Maria Sequence II base and another to Santa Maria Sequencie II top. In the first case, the fossiliferous rock is a floodplain mudstone and there are two variables: 1) after the final burial bone stay out of phreatic level, favoring a good preservation and 2) bone stay in phreatic oscillation zone resulting in a bad preservation. These two possibilities may overlap. For Santa Maria Sequence II top the fossiliferous rock is a deltaic massive sandstone and the preservation occurs by ion percolation outside the phreatic oscillation zone, resulting in a good preservation. The crystalline refinement showed that during the fossilization processes bone apatite suffers changes in crystallographic parameters, indicating a mineralogical change due to anion substitution inside crystalline structure, especially floride and carbonate found in any sedimentary environment. Infrared spectroscopy made possible to observe the carbonate entry and the phosphate in the bone marrow. Due this, were concluded that the bone marrow serve as the primary conduit for the diagenetic fluids, and the change of hydroxylapatite for carbonate fluorapatite and fluorapatite occurs from the inside to outside.
3

A fossildiagênese do pacote Meso-Neotriássico do RS

Horn, Bruno Ludovico Dihl January 2013 (has links)
A presente dissertação apresenta um estudo sobre a fossildiagênese da Supersequencia Santa Maria. Esta unidade contém uma grande variedade de vertebrados fósseis, que são conhecidos deste o início do século XX. Muitas vezes a preservação destes fósseis é excelente, mas alguns não seguem esse padrão. Algumas vezes, o processo de crescimento dos minerais permineralizantes pode destruir a forma original dos ossos, o que impede, às vezes, a sua identificação taxonômica precisa. Este trabalho tem como objetivo principal estudar os diferentes tipos de fossilização que ocorrem nos pacotes fossilíferos da Supersequência Santa Maria (Sequências Santa Maria I e II). Para isso, foram realizadas análises petrográficas por microscopia óptica, difração de raios X, refinamento cristalino e por espectroscopia no infravermelho. Em alguns ossos, foram coletadas amostras (para análises geoquímicas) em distintas porções do osso (mais externas e mais internas). Os resultados obtidos possibilitaram estudar as modificações cristaloquímicas e diagenéticas da apatita que compõe os ossos fósseis e compreender a evolução dos processos de fossilização. Através das análises petrográficas, foi possível identificar todas as fases minerais envolvidas nestes processos e estudar as transformações da hidroxiapatita ao longo da diagenênese. As análises possibilitaram identificar calcita, hematita e calcedônia como minerais precipitados durante a fossilização e fluorapatita e carbonato fluorapatita como as variedades de apatita que ocorrem nos ossos. Também foram observadas diferenças nas microfeições de calcita em ossos bem preservados (cristais grandes preenchendo completamente as cavidades internas) e mal preservados (calcita micro espática típica de calcretes freáticos). Com base nos resultados, foram identificados dois padrões, sendo um para Sequencia Santa Maria I e base da Sequencia Santa Maria II e outro para o topo da Sequencia Santa Maria II. No primeiro caso, onde a rocha fossilífera é um pelito depositado em planície de inundação, existem duas variantes: 1) após o soterramento final, o osso não ficar na zona de oscilação de nível freático, acarretando um uma boa preservação e 2) o osso ficar na zona de oscilação de nível freático, recebendo maior aporte de íons e tendo uma probabilidade maior de sofrer alteração volumétrica. Estas duas possibilidades podem sobrepor-se. Já no topo na Sequencia Santa Maria II, a rocha fossilífera é um arenito fino e a preservação se dá pela percolação de íons fora da zona de oscilação do nível freático, implicando em uma boa preservação. O refinamento cristalino mostrou que, durante o processo de fossilização, a apatita sofre mudança nos parâmetros cristalográficos, indicando uma mudança mineralógica causada principalmente pela substituição dos ânions na estrutura cristalina, especialmente incluindo o flúor e o carbonato, íons muito comuns nas águas superficiais. As análises por espectroscopia no infravermelho permitiram constatar a entrada de carbonato e a diminuição de fosfato nas porções mais centrais do osso, que são as mais alteradas. Com isso, se pode concluir que as partes mais centrais dos ossos servem de conduto principal para os fluidos diagenéticos e que a alteração da hidroxiapatita para carbonato apatita ocorre de dentro para fora. / The present master degree thesis presents a study about Santa Maria Supersequence fossildiagenesis. This unit contains a great variety of vertebrate fossils known since the early XX century. In many cases, the fossils are in excellent preservational state, although some of them do not follow this pattern. The process of expansive growth of the permineralizing minerals destroys the original shape of the fossils, which sometimes does not allow an accurate taxonomic identification. This work has as main objective to study the different fossilization patterns that occurs in Santa Maria Sequences I and II. For that, petrographic analyzes were performed by optical microscopy, X-ray diffraction, refinement and crystal infrared spectroscopy. In some bones were collected samples (for geochemical analysis) in different portions of the bone (from bone marrow to the edges). The results made possible to study the crystallochemical and diagenetic modifications of bone apatite in places with distinct preservational states, and understand the evolution of the fossilization processes. Through petrographic analyses were possible to identificate all mineral phases involved in fossilization process and to study hydroxylapatite transformations through fossildiagenetic process. Were identified calcite, hematite and chalcedony as precipited minerals during fossilization besides fluorapatite and carbonate fluorapatite as varieties of bone apatite after fossildiagenesis. Also were observed differences in calcite microfeatures between well preserved bones (big crystals filling all bone cavities) and badly preserved (microspar calcite, typical of phreatic precipitation). Based in these results were recognized two patterns, being one for Santa Maria Sequence I and Santa Maria Sequence II base and another to Santa Maria Sequencie II top. In the first case, the fossiliferous rock is a floodplain mudstone and there are two variables: 1) after the final burial bone stay out of phreatic level, favoring a good preservation and 2) bone stay in phreatic oscillation zone resulting in a bad preservation. These two possibilities may overlap. For Santa Maria Sequence II top the fossiliferous rock is a deltaic massive sandstone and the preservation occurs by ion percolation outside the phreatic oscillation zone, resulting in a good preservation. The crystalline refinement showed that during the fossilization processes bone apatite suffers changes in crystallographic parameters, indicating a mineralogical change due to anion substitution inside crystalline structure, especially floride and carbonate found in any sedimentary environment. Infrared spectroscopy made possible to observe the carbonate entry and the phosphate in the bone marrow. Due this, were concluded that the bone marrow serve as the primary conduit for the diagenetic fluids, and the change of hydroxylapatite for carbonate fluorapatite and fluorapatite occurs from the inside to outside.
4

Estudo cristaloquímico de minerais do grupo do pirocloro no Brasil / Crystallochemistry study of pyrochlore group minerals from Brazil

Andrade, Marcelo Barbosa de 18 June 2007 (has links)
Os minerais do grupo do pirocloro (A2B2X6Y1) apresentam grande interesse econômico, principalmente como fonte de nióbio e tântalo, metais que possuem importantes aplicações tecnológicas como a fabricação de aço e a confecção de componentes eletrônicos. Apesar de seu interesse científico e econômico, a maioria das ocorrências brasileiras de minerais do grupo do pirocloro está apenas parcialmente caracterizada ou não dispõe de nenhum estudo mineralógico. Adicionalmente, o atual sistema de classificação dos minerais do grupo do pirocloro, apesar de aprovado pela IMA, não segue as regras gerais de nomenclatura de minerais da própria IMA. Na posição A, não há diferenciação na ocupação por Ca e por Na, e se um ou mais cátions diferentes de Na ou Ca compuserem mais de 20 % total de átomos na posição A, então a espécie é nomeada pelo átomo mais abundante em A (exceto Na e Ca). Por outro lado, a espécie fluornatromicrolita foi aprovada com base na predominância de Na na posição A. Com relação à ocupação da posição B, a divisão entre os grupos não é feita com uma classificação tripartite: as espécies com Nb + Ta >2Ti e Nb > Ta são consideradas como do subgrupo do pirocloro; se Nb + Ta > 2Ti e Ta ≥ Nb, o mineral irá pertencer ao subgrupo da microlita; e se 2Ti ≥ Nb + Ta, o mineral irá pertencer ao subgrupo da betafita. Espécies isoestruturais com outros cátions predominantes na posição B não são incluídas no grupo do pirocloro (por exemplo, romeíta com Sb dominante). Os ânions não são levados em consideração na classificação, mas o flúor foi usado na aprovação da espécie fluornatromicrolita. Neste trabalho, são apresentados novos esquemas de nomenclatura para os minerais do grupo do pirocloro, que levam em consideração os íons ocupantes das posições A, B e Y. Os prefixos são sempre escritos por extenso (\'hidroxi\', \'fluor\', \'calcio\', \'natro\' etc), enquanto os sufixos são representados por símbolos químicos (Na, F, H2O etc) ou por [] (vazio). Os nomes raízes relacionam-se aos cátions predominantes na posição B, levando a termos como pirocloro, microlita, betafita e romeíta. São apresentados novos dados químicos por MEV-EDS e WDS (incluindo análises de Si, normalmente negligenciado na maioria dos dados da literatura). Foram analisados minerais de seis ocorrências em pegmatitos e uma em carbonatito. Os resultados obtidos permitem separar as espécies em três \'famílias\'. A primeira delas poderia ser denominada \'microlita\', envolvendo fluornatromicrolita, fluorcalciomicrolita, oxinatromicrolita e oxicalciomicrolita. Esta família foi identificada nas ocorrências da lavra do Morro Redondo, Coronel Murta, MG; lavra do Jonas, Conselheiro Pena, MG; mina Quixabá, Frei Martinho, PB; Pegmatito Volta Grande, Nazareno, MG; lavra do Ipê, Marilac, MG; e Pegmatito Ponte da Raiz, Santa Maria de Itabira, MG. A primeira das espécies, fluornatromicrolita, parece ser bem mais comum do que se imaginava, tendo sido descrita previamente no Brasil apenas em Quixabá, e agora verificada em diversas das ocorrências estudadas nesta tese. Apesar de usados os prefixos natro e cálcio, todas as amostras parecem tender para um termo de fórmula final (NaCa)Ta2O6F, ou seja, com Na=Ca em apfu, que poderia ser denominado, por exemplo, fluormicrolita-NaCa ou CaNa. O oxigênio é, algumas vezes, superior ao flúor (em apfu) na cavidade Y, dando origem a espécie oxi-. A segunda família poderia ser denominada \'hidromicrolita\', tendendo a [ [](H2O)]Ta2O6(H2O). Esta fórmula, entretanto, não é eletricamente neutra, necessitando que na cavidade A, (H2O) seja parcialmente substituído por cátions (Ba, U etc), ao mesmo tempo que parte do O da posição X seja substituído por (OH). Minerais desta família foram verificados no Pegmatito Volta Grande, Nazareno, MG. A terceira família, do \'pirocloro\', verificada apenas no carbonatito da mina Jacupiranga, Cajati, SP, inclui as espécies fluorcalciopirocloro e oxicalciopirocloro. Os novos nomes sugeridos parecem discriminar melhor as espécies, com base em cátions, vazios ou H2O predominantes nas posições A, B eY, permitindo inclusive uni-las em \'famílias\'. Esta nova nomenclatura apresenta também como vantagem não dar ênfase a componentes menores da cavidade A, bem como verificar nela a predominância de Ca ou Na. Adicionalmente, os cátions Ta, Nb e Ti passam a ter a mesma importância na cavidade B. Por outro lado são criados nomes \'exóticos\', como hidrohidromicrolita, ou \'impronunciáveis\', como hidro-[]-microlita. / Pyrochlore group minerals are important sources of niobium and tantalum and these metals are used in important technological applications such as steel manufacturing and eletronic components development. However, the majority of Brazilian occurrences are only partially characterized or there is no mineralogic study available. In addition, the official pyrochlore-group minerals classification system does not follow the IMA mineralogical nomenclature rules although this system is approved by IMA. In the A site, it does not differentiate between occupation by Ca and Na, and if there is one or more cation other than Na or Ca composing more than 20% of total A-atoms, then the species must be named according to the most abundant A-atom, other than Na or Ca. In spite of this, the species fluornatromicrolite was approved based on the predominance of Na in the A-site. Regarding the B-site occupation, the division among the subgroups is not made with a tripartite symmetrical classification: the species with Nb + Ta >2Ti and Nb > Ta are considered as pyrochlore subgroup minerals; if Nb + Ta > 2Ti and Ta ≥ Nb, the mineral will belong to the microlite subgroup; and if 2Ti ≥ Nb + Ta, the mineral will belong to the betafite subgroup. Isostructural species with other predominant cations in the B-site are not included in the pyrochlore-group (for example, romeite, with dominant Sb). The anions are not taken into account in the classification but the predominance of fluorine was used for the approval of the species fluornatromicrolite. In this present work new nomenclature schemes, based on the ions in A, B and Y sites, are presented. Prefixes are, for example, \'hidroxi\', \'fluor\', \'calcio\', \'natro\' etc., while sufixes are represented by chemical symbols (Na, F, H2O etc) or [] (vacancies). The root names (pyrochlore, microlite, betafite, romeite) are related to the dominant-constituent cations in the B position. New chemical data by MEV-EDS and WDS (including Si analysis, hardly ever mentioned in litetarature) were obtained. Six occurrences from pegmatites and one from carbonatite were analysed. The results allow the species to be grouped in three \'families\'. The first could be named as \'microlite\', and includies fluornatromicrolite, fluorcalciomicrolite, oxinatromicrolite and oxicalciomicrolite. This family was identified in Morro Redondo quarry, Coronel Murta, MG; Jonas quarry, Conselheiro Pena, MG; Quixabá mine, Frei Martinho, PB; Volta Grande pegmatite, Nazareno, MG; Ipê quarry, Marilac, MG and Ponte da Raiz pegmatite, Santa Maria de Itabira, MG. Fluornatromicrolite seems to be more common than was previously thought. It was previously described only in Quixabá but now many other occurrences are known. Although \'natro\' and \'calcio\' prefixes were used, all the formulae seem to approach the term (NaCa)Ta2O6F. As Na approximately equals Ca (apfu) it could be used the name fluornatromicrolite-Na-Ca or CaNa could be used. The oxigen content is sometimes greater than F content in the Y position. This generates the oxi- species. The second family could be named \'hidromicrolite\', becoming [ [] (H2O)]Ta2O6(H2O). This formulae is not eletrically neutral so the H2O is replaced by cations (Ba, U etc) in the A cavity while the O is replaced by (OH) in the X position. Minerals from this family were identified in the Volta Grande pegmatite, Nazareno, MG. The third family, \'pyrochlore\', was only verified in the Jacupiranga mine, Cajati, SP, including fluorcalciopyrochlore and oxicalciopyrochlore species. The suggested new names, based on cations, vacancies or H2O dominant constituents of A, B and Y sites, seem to better describe the species, allowing their grouping in families. This new nomenclature has the advantage of not emphasize minor constituents in the A cavity, and verify the dominance of Ca or Na. Furthermore, Ta, Nb and Ti cations have the same balance in B cavity. On the other hand, exotic names were created such as hydrohydromicrolite or unpronounceable as hydro-[]-microlite.
5

Estudo cristaloquímico de minerais do grupo do pirocloro no Brasil / Crystallochemistry study of pyrochlore group minerals from Brazil

Marcelo Barbosa de Andrade 18 June 2007 (has links)
Os minerais do grupo do pirocloro (A2B2X6Y1) apresentam grande interesse econômico, principalmente como fonte de nióbio e tântalo, metais que possuem importantes aplicações tecnológicas como a fabricação de aço e a confecção de componentes eletrônicos. Apesar de seu interesse científico e econômico, a maioria das ocorrências brasileiras de minerais do grupo do pirocloro está apenas parcialmente caracterizada ou não dispõe de nenhum estudo mineralógico. Adicionalmente, o atual sistema de classificação dos minerais do grupo do pirocloro, apesar de aprovado pela IMA, não segue as regras gerais de nomenclatura de minerais da própria IMA. Na posição A, não há diferenciação na ocupação por Ca e por Na, e se um ou mais cátions diferentes de Na ou Ca compuserem mais de 20 % total de átomos na posição A, então a espécie é nomeada pelo átomo mais abundante em A (exceto Na e Ca). Por outro lado, a espécie fluornatromicrolita foi aprovada com base na predominância de Na na posição A. Com relação à ocupação da posição B, a divisão entre os grupos não é feita com uma classificação tripartite: as espécies com Nb + Ta >2Ti e Nb > Ta são consideradas como do subgrupo do pirocloro; se Nb + Ta > 2Ti e Ta ≥ Nb, o mineral irá pertencer ao subgrupo da microlita; e se 2Ti ≥ Nb + Ta, o mineral irá pertencer ao subgrupo da betafita. Espécies isoestruturais com outros cátions predominantes na posição B não são incluídas no grupo do pirocloro (por exemplo, romeíta com Sb dominante). Os ânions não são levados em consideração na classificação, mas o flúor foi usado na aprovação da espécie fluornatromicrolita. Neste trabalho, são apresentados novos esquemas de nomenclatura para os minerais do grupo do pirocloro, que levam em consideração os íons ocupantes das posições A, B e Y. Os prefixos são sempre escritos por extenso (\'hidroxi\', \'fluor\', \'calcio\', \'natro\' etc), enquanto os sufixos são representados por símbolos químicos (Na, F, H2O etc) ou por [] (vazio). Os nomes raízes relacionam-se aos cátions predominantes na posição B, levando a termos como pirocloro, microlita, betafita e romeíta. São apresentados novos dados químicos por MEV-EDS e WDS (incluindo análises de Si, normalmente negligenciado na maioria dos dados da literatura). Foram analisados minerais de seis ocorrências em pegmatitos e uma em carbonatito. Os resultados obtidos permitem separar as espécies em três \'famílias\'. A primeira delas poderia ser denominada \'microlita\', envolvendo fluornatromicrolita, fluorcalciomicrolita, oxinatromicrolita e oxicalciomicrolita. Esta família foi identificada nas ocorrências da lavra do Morro Redondo, Coronel Murta, MG; lavra do Jonas, Conselheiro Pena, MG; mina Quixabá, Frei Martinho, PB; Pegmatito Volta Grande, Nazareno, MG; lavra do Ipê, Marilac, MG; e Pegmatito Ponte da Raiz, Santa Maria de Itabira, MG. A primeira das espécies, fluornatromicrolita, parece ser bem mais comum do que se imaginava, tendo sido descrita previamente no Brasil apenas em Quixabá, e agora verificada em diversas das ocorrências estudadas nesta tese. Apesar de usados os prefixos natro e cálcio, todas as amostras parecem tender para um termo de fórmula final (NaCa)Ta2O6F, ou seja, com Na=Ca em apfu, que poderia ser denominado, por exemplo, fluormicrolita-NaCa ou CaNa. O oxigênio é, algumas vezes, superior ao flúor (em apfu) na cavidade Y, dando origem a espécie oxi-. A segunda família poderia ser denominada \'hidromicrolita\', tendendo a [ [](H2O)]Ta2O6(H2O). Esta fórmula, entretanto, não é eletricamente neutra, necessitando que na cavidade A, (H2O) seja parcialmente substituído por cátions (Ba, U etc), ao mesmo tempo que parte do O da posição X seja substituído por (OH). Minerais desta família foram verificados no Pegmatito Volta Grande, Nazareno, MG. A terceira família, do \'pirocloro\', verificada apenas no carbonatito da mina Jacupiranga, Cajati, SP, inclui as espécies fluorcalciopirocloro e oxicalciopirocloro. Os novos nomes sugeridos parecem discriminar melhor as espécies, com base em cátions, vazios ou H2O predominantes nas posições A, B eY, permitindo inclusive uni-las em \'famílias\'. Esta nova nomenclatura apresenta também como vantagem não dar ênfase a componentes menores da cavidade A, bem como verificar nela a predominância de Ca ou Na. Adicionalmente, os cátions Ta, Nb e Ti passam a ter a mesma importância na cavidade B. Por outro lado são criados nomes \'exóticos\', como hidrohidromicrolita, ou \'impronunciáveis\', como hidro-[]-microlita. / Pyrochlore group minerals are important sources of niobium and tantalum and these metals are used in important technological applications such as steel manufacturing and eletronic components development. However, the majority of Brazilian occurrences are only partially characterized or there is no mineralogic study available. In addition, the official pyrochlore-group minerals classification system does not follow the IMA mineralogical nomenclature rules although this system is approved by IMA. In the A site, it does not differentiate between occupation by Ca and Na, and if there is one or more cation other than Na or Ca composing more than 20% of total A-atoms, then the species must be named according to the most abundant A-atom, other than Na or Ca. In spite of this, the species fluornatromicrolite was approved based on the predominance of Na in the A-site. Regarding the B-site occupation, the division among the subgroups is not made with a tripartite symmetrical classification: the species with Nb + Ta >2Ti and Nb > Ta are considered as pyrochlore subgroup minerals; if Nb + Ta > 2Ti and Ta ≥ Nb, the mineral will belong to the microlite subgroup; and if 2Ti ≥ Nb + Ta, the mineral will belong to the betafite subgroup. Isostructural species with other predominant cations in the B-site are not included in the pyrochlore-group (for example, romeite, with dominant Sb). The anions are not taken into account in the classification but the predominance of fluorine was used for the approval of the species fluornatromicrolite. In this present work new nomenclature schemes, based on the ions in A, B and Y sites, are presented. Prefixes are, for example, \'hidroxi\', \'fluor\', \'calcio\', \'natro\' etc., while sufixes are represented by chemical symbols (Na, F, H2O etc) or [] (vacancies). The root names (pyrochlore, microlite, betafite, romeite) are related to the dominant-constituent cations in the B position. New chemical data by MEV-EDS and WDS (including Si analysis, hardly ever mentioned in litetarature) were obtained. Six occurrences from pegmatites and one from carbonatite were analysed. The results allow the species to be grouped in three \'families\'. The first could be named as \'microlite\', and includies fluornatromicrolite, fluorcalciomicrolite, oxinatromicrolite and oxicalciomicrolite. This family was identified in Morro Redondo quarry, Coronel Murta, MG; Jonas quarry, Conselheiro Pena, MG; Quixabá mine, Frei Martinho, PB; Volta Grande pegmatite, Nazareno, MG; Ipê quarry, Marilac, MG and Ponte da Raiz pegmatite, Santa Maria de Itabira, MG. Fluornatromicrolite seems to be more common than was previously thought. It was previously described only in Quixabá but now many other occurrences are known. Although \'natro\' and \'calcio\' prefixes were used, all the formulae seem to approach the term (NaCa)Ta2O6F. As Na approximately equals Ca (apfu) it could be used the name fluornatromicrolite-Na-Ca or CaNa could be used. The oxigen content is sometimes greater than F content in the Y position. This generates the oxi- species. The second family could be named \'hidromicrolite\', becoming [ [] (H2O)]Ta2O6(H2O). This formulae is not eletrically neutral so the H2O is replaced by cations (Ba, U etc) in the A cavity while the O is replaced by (OH) in the X position. Minerals from this family were identified in the Volta Grande pegmatite, Nazareno, MG. The third family, \'pyrochlore\', was only verified in the Jacupiranga mine, Cajati, SP, including fluorcalciopyrochlore and oxicalciopyrochlore species. The suggested new names, based on cations, vacancies or H2O dominant constituents of A, B and Y sites, seem to better describe the species, allowing their grouping in families. This new nomenclature has the advantage of not emphasize minor constituents in the A cavity, and verify the dominance of Ca or Na. Furthermore, Ta, Nb and Ti cations have the same balance in B cavity. On the other hand, exotic names were created such as hydrohydromicrolite or unpronounceable as hydro-[]-microlite.
6

Système d'altération et minéralisation en uranium le long du faisceau structural Kiggavik-Andrew Lake (Nunavut, Canada) : modèle génétique et guides d'exploration / Alteration system and uranium mineralization along the Kiggavik-Andrew Lake structural trend (Nunavut, Canada) : metallogenic model and exploration pathfinders

Riegler, Thomas 10 December 2013 (has links)
Ce travail présente une étude multi-échelle des relations entre altération et minéralisation en uranium le long de la bordure Sud Est du bassin Méso-Protérozoïque du Thelon, au Nunavut, Canada. Les altérations associées aux minéralisations sont développées dans une série volcano-sédimentaire Archéenne appartenant à la ceinture de roche verte du Woodburn Lake Group (WLG). Elles s'expriment majoritairement par un assemblage à illite (polytypes 1Mcis & 1Mtrans) ± sudoite ± hématite et phosphates sulfates d'aluminium hydratés (APS). De plus des composés carbonés, cogénétiques des minéralisations, ont été identifiés comme des produits des réactions hydrothermales. La signature de l'altération, fortement guidées par les structures Est-Ouest du corridor de Kiggavik-Andrew Lake, apparaît alors très similaire à celle rencontrée dans les roches de socles des parties profondes des autres gisements d'uranium de type discordance du bassin d'Athabasca (Canada) ou de la Kombolgie (Australie). L'étude des marqueurs minéralogiques tels que les APS ont permis de mettre en évidence les transferts élémentaires au cours des processus métallogéniques et de distinguer les caractéristiques pétrographique et chimiques des processus diagénétiques et hydrothermaux. Enfin la compréhension fine de l'expression de marqueurs cristallographiques issus de l'irradiation naturelle des minéraux argileux donne de nouvelles pistes pour le traçage et la compréhension des circulations des radios-éléments à l'échelle géologique. / This work presents a multi-scale study of the relationships between alteration and uranium mineralization along the South Eastern margin of the Meso-Proterozoic Thelon Basin, Nunavut, Canada. The ore associated alterations are hosted in an Archean volcano-sedimentary sequence belonging to the Woodburn Lake Group (WLG). Their main expression is a mineral assemblage composed of dominant illite (1Mcis & 1Mtrans polytypes) together with sudoite ± hematite and aluminum phosphate sulfate minerals. Moreover carbonaceous materials cogenetic with the uranium mineralization have been identified as potential indicators of the hydrothermal conditions. At a regional scale, alteration is strongly controlled via East-West faults forming the main frame of the Kiggavik-Andrew Lake structural trend. Then from the regional to the mineral scale, alterations signatures at Kiggavik are similar to the ones described in deep basement rocks of unconformity type uranium deposits in both Athabasca (Canada) and Kombolgie (Australia) Paleoproterozoic basins. In addition mineralogical markers studies (APS minerals) lead to the distinction between hydrothermal and diagenetic processes as well as elemental transfers during fluid rock interaction. Finally, detailed studies on radiation induced defects on illite revealed new ways to tracing and better understanding the radio elements mobility in such deep seated natural systems.

Page generated in 0.0733 seconds