• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 29
  • 13
  • 7
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 117
  • 22
  • 22
  • 20
  • 19
  • 18
  • 17
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Analysis of the microstructure transformation (wel formation) in pearlitic steel used in relevant engineering wear systems. / Análise da transformação microestrutural (formação da camada branca) em aço perlítico utilizado em relevantes sistemas de desgaste em engenharia.

Pereira Agudelo, Juan Ignacio 14 May 2018 (has links)
In this thesis, the behavior of pearlitic steel was characterized under controlled wear conditions in the laboratory and service conditions in two ore mining stages, comminution and transportation. The thesis consists in three experimental chapters, divided according to the tribosystems analyzed. On all the chapters Electro Microscopy techniques for the microstructural analysis were employed. Scanning Electron Microscopy (SEM), Focused Ion Beam (FIB-SEM), Electron Backscatter Diffraction (EBSD) and Transmission Electron Microscopy (TEM) were used. The first experimental chapter shows the analysis of the pearlite under abrasive wear with loose abrasive particles in multi-events conditions. The sample was taken from Semi-Autogenous Grinding mills (SAG) and experimental simulation was carried out in laboratory using the Dry Sand Rubber Wheel Abrasion Test (DSRW). The results show a polycrystalline layer formation in both cases, characterized by ultra-fine grains of ferrite in the layer closer to the surface. It was also concluded that the DSRW can simulate the wear produced on field (superficial and microstructural features) in conditions of higher normal load than recommended by the ASTM Standard G65. The second experimental chapter explores the characterization of the microstructure after the indenter pass in scratch test using two conditions of normal load applied and five sequences of scratch. The microstructural analysis shows the formation of two subsuperficial layers identified by the level of the microstructural alterations. In the subsuperficial layer (close to the surface), the formation of new ultra-fine grains of ferrite was observed. A second layer was observed deeper in the sample and denominated as layer of the microstructure transition, characterized by the combination of deformed (reduction of the interlamellar spacing) and pearlite colonies not affected plastically by the mechanical loading. On this layer, the crystallographic texture in RD // in samples tested at 4 N (normal load) and one-pass scratch was determined. Later, on this chapter, the microstructure in a ground rail (industrial procedure characterized as a multi-event scratch test) was analyzed. Two grinding conditions were used for the analysis with variation of the grinding linear speed and load on the grinding stones (discs). The combination of low grinding speed and high load promotes a higher deformed layer formation beneath the patch zone and low randomized orientation of the pearlite colonies. Finally, in the third experimental chapter, the pearlitic characterization was concluded with the study of samples of railway wheel and rail under wear in service and Rolling Contact Fatigue (RCF) in laboratory. The laboratorial simulation was carried out using the twin-disc rolling contact tribometer with a variation of number of cycles. The characterization of railway wheel shows that the WEL is characterized by levels of breaking and aligned cementite and zones with dissolution of the carbon atom in the ferrite to form the supersaturated carbon ferrite. The polycrystalline ferrite formation (ultra-fine grains) in the sub-superficial layer and it was identified a preferential orientation of RD // in the layer of microstructural transition. The results of the laboratory test show surface crack nucleation and propagation at low angle in the more severe deformed layer. The microstructure of the layer consists in polycrystalline ferrite and the cementite dissolution. / Nesta tese foi caracterizado o comportamento do aço perlítico em condições controladas de desgaste em laboratório e em serviço em dois estágios do processo de mineração de minério, cominução e transporte ferroviário. A tese consiste em três capítulos experimentais divididos segundo o tribosistema analisado. Em todos os capítulos do trabalho foi utilizada a técnica de microscopia eletrônica para análise microestrutural. Foi utilizado Microscopia eletrônica de varredura (MEV), Focused Ion Beam (FIB-SEM), Electron Backscatter Diffraction (EBSD) e Microscopia eletrônica de transmissão (MET). O primeiro capítulo experimental mostra a análise da perlita in condições de desgaste abrasivo com partículas soltas em eventos múltiplos. As amostras foram tiradas de um moinho semi-autógeno (SAG) e realizada uma simulação experimental do desgaste em condições controladas usando o tribômetro de roda de borracha (RWAT). Os resultados mostraram a formação de camada branca em ambas as condições de análise, consistindo em uma camada poli cristalina caracterizada pela formação de grãos ultrafinos na camada mais próxima da superfície de desgaste. Também foi concluído que a roda de borracha pode simular o desgaste produzido nos moinhos SAG tanto nas características superficiais quanto microestruturais em condições de maior severidade as comumente utilizadas na norma ASTM G65 (procedimento B). O Segundo capítulo experimental explora a caracterização da microestrutura depois da passagem do endentador no ensaio de riscamento (scratch test) utilizando duas condições de carga normal aplicada e 5 sequências de riscamento. A análise microestrutural mostrou a formação de duas camadas subsuperficiais identificadas pelo nível de alteração microestrutural. Na camada mais próxima da superfície de desgaste foi observada a formação de grãos ultrafinos de ferrita. A segunda camada identificada mais profundamente na amostra, denominada como camada de transição, é caracterizada pela combinação de colônias deformadas (redução do espaçamento interlamelar) e camadas não afetadas pelos esforços produzidos no contato. Nesta camada foi determinada a texturização em direção RD // nas amostras testadas a 4 N (carga normal aplicada) e uma passada. Posteriormente à análise de riscamento foi caracterizada a microestrutura de uma amostra tirada de um trilho esmerilhado (processo industrial que pode ser considerado como aplicação do ensaio de riscamento). Foram consideradas duas condições de esmerilhamento com variação de velocidade de esmerilhamento (deslocamento linear do veículo esmerilhador) e potência dos motores dos rebolos usada no procedimento. A combinação de baixa velocidade de esmerilhamento e alta potência nos motores controladores dos rebolos promoveu uma grande deformação nas camadas subsuperficiais na região de contato e uma baixa aleatoriedade das orientações cristalográficas das colônias de perlita. Finalmente, no capítulo três, a caracterização da microestrutura perlitica foi finalizada com o estudo de amostras de roda e trilho em condições de desgaste em campo e de Rolling Contact Fatigue (RCF) em ensaios de laboratório. A simulação experimental foi realizada utilizando o tribômetro twin-disc rolling (configuração disco-disco) com variação do número de ciclos. A caracterização da roda ferroviária mostrou a formação da camada branca caracterizada por níveis de cementita fraturada e alinhada em direção do movimento de rolamento/deslizamento com áreas de dissolução do átomo de carbono na ferrita formando uma ferrita supersaturada. Foi identificado a formação de policristais de ferrita (grãos ultrafinos) na camada mais superficial e uma orientação preferencial RD // na camada de transição. Os resultados dos ensaios de laboratório mostraram a nucleação de trincas superficiais se propagando a baixo ângulo na camada branca. A transformação microestrutural dessa camada após ensaios de laboratório consiste em policristais de ferrita e dissolução da cementita.
62

Structural characterisation of novel poly-aryl compounds

Khashoqji, Moayad January 2016 (has links)
Poly-aryl, also known as polyphenylene compounds are a class of dendrimer, which contain a large number of aromatic rings. They are of interest because they display restricted rotation of their stearically congested aromatic rings. These extended structures have the potential to act as precursors for even larger aromatic systems and have many applications including electronic devices, drug delivery and catalysis. A total of 23 novel poly-aryl compounds have been examined using single crystal X-ray diffraction and a number of structural patterns have emerged. Six of the compounds contain alkynes and it has been observed that their conformation is governed by a combination of conjugation between the alkyne and aryl groups and inter-molecular interactions. In the more extended poly-aryl compounds steric congestion rules out any possibility of conjugation between the rings and their conformation is governed by intra-molecular non-bonded interactions in the core of the molecules and by inter-molecular interactions in their periphery. Where possible, solution NMR measurements were carried out on the poly-aryl compounds and confirmed that the solution structures are in agreement with those obtained from individual crystal.
63

Affine Hermite-Lorentz manifolds / Variétés affines Hermite-Lorentz

Barucchieri, Bianca 26 September 2019 (has links)
Dans ce travail nous nous intéressons aux groupes cristallographiques, i.e. aux sous-groupes du groupe des transformations affines qui agissent proprement discontinûment et de façon cocompacte sur l’espace affine. Ce sont les groupes fondamentaux des variétés affines compactes et complètes. Nous classifions les groupes cristallographiques dont la partie linéaire préserve une forme hermitienne de signature (n,1). Grunewald et Margulis ont prouvé que ces groupes cristallographiques sont virtuellement résolubles (la conjecture d’Auslander affirme que c’est toujours le cas). Notre classification est effectuée pour n ≤ 3. Elle correspond à la classification, à revêtement fini près, des variétés Hermite-Lorentz plates, compactes et complètes en dimension complexe inférieure ou égale à4. Ce travail est inspiré par ceux menés par Bieberbach, puis Fried, et enfin Grunewald et Margulis sur les groupes cristallographiques dont la partie linéaire préserve une forme quadratique définie positive ou lorentzienne. En effectuant cette classification, nous avons été amené à étudier certains familles d’algèbres de Lie nilpotentes de dimension 8. Nous avons ensuite étendu cette classification à celle de toutes les algèbres de Lie 3-nilpotentes de dimension 8 ayant l’algèbre de Lie libre 3-nilpotente à 3générateurs pour quotient. Ce résultat peut être vu comme un pas dans la direction d’une classification des algèbres de Lie nilpotentes de dimension 8. Ensuite nous nous sommes demandé lesquelles de ces algèbres admettent une métrique pseudo-riemannienne plate et nous avons donné une réponse partielle. / In this work we deal with crystallographic groups, i.e. the subgroups of the group of affine transformations that act properly discontinuously and cocompactly on affine space. In otherwords they are the fundamental groups of compact and complete affine manifolds. In this thesis we classify such groups with the additional hypothesis that the linear part preserves a Hermitian form of signature (n,1). Grunewald and Margulis proved that such crystallographic groups are virtually solvable (the Auslander conjecture states that this is always true). Our classification is for n ≤ 3. It corresponds to a classification, up to finite covering, and for complex dimension at most 4, of flat compact complete Hermite-Lorentz manifolds. This is inspired by the works done by Bieberbach,then Fried, and finally Grunewald and Margulis who classified crystallographic groups whose line arpart preserves a positive definite or Lorentzian quadratic form. Making this classification we had to classify a family of 8-dimensional nilpotent Lie algebras. We then extended this classification toall the 8-dimensional 3-step nilpotent Lie algebras having the free 2-step nilpotent Lie algebra on 3generators as quotient. This result can be seen as a step in the direction of a general classification of nilpotent Lie algebras of dimension 8. We then wondered which of these Lie algebras admit flat pseudo-Riemannian metrics and gave a partial answer to this question.
64

A MICROSTRUCTURE-BASED MODEL VALIDATED EXPERIMENTALLY FOR QUANTIFICATION OF SHORT FATIGUE CRACK GROWTH IN THREE-DIMENSIONS

Cai, Pei 01 January 2018 (has links)
Built on the recent successes in understanding the crystallographic mechanism for short fatigue crack (SFC) growth across a grain boundary (GB) and developing an experimental method to quantify the GB resistance against short crack growth, a microstructure-based model was developed in this study to simulate the growth behaviors of SFCs in 3-D, by taking into account both the driving force and resistance along at each point along the crack front in an alloy. It was found that the GB resistance was a Weibull function of the minimum twist angle of crack deflection at the boundary in AA2024-T3 Al alloys. In the digital microstructure used in the model, the resistance at each GB that the short crack interacted with could be calculated, as long as the orientations of grains and the crack were known. In the model, an influence function accounting for the overlapping effect of the resistance from the neighboring grain boundaries was proposed, allowing for calculation of the total resistance distribution along the crack front. In order to overcome the time consuming problem for the existing equations to derive the distribution of stress intensity factor along the crack front under cyclic loading, an analytical equation was proposed to quantify the stress intensity factor distribution along an irregular shape planar crack. By introducing two shape-dependent factors, the fractured area and the perimeter of the crack front, the newly proposed equation could readily and accurately derive the stress intensity factor distribution along the crack front that had large curvatures and singularities. Finally, a microscopic-scale Paris’ equation was proposed that took into account both the driving force, i.e., stress intensity factor range, and the total resistance to calculate the growth rate at each point along crack front. The model developed in this work was able to incorporate microstructure, such as grain size and shape, and texture into simulation of SFC growth in 3-D. It was capable of simulating all the anomalous growth behaviors of SFCs, such as the marked scatters in growth rate measurement, retardation and arrest at grain boundaries, and crack plane deflection at grain boundaries, etc. The model was used to simulate the growth behaviors of SFCs initiated from prefractured constituent particles in order to interpret the multi-site fatigue crack initiation observed in AA2024-T351 Al alloys. Three types of SFCs were observed initiating from these particles, namely, type-I non-propagating cracks; type-II cracks which were arrested soon after propagating into the matrix; and type-III propagating cracks. To quantitatively study the 3-D effects of particle geometry and micro-texture on the growth behaviors of micro-cracks in these particles, rectangular micro-notches with different dimensions were fabricated using focused ion beam in the selected grains on the T-S planes in AA2024-T351 Al alloys, to mimic the pre-fractured particles in these alloys. Knowing the notch dimensions or particle shape, grain orientation and GB geometry, the simulated crack growth behaviors were consistent with the experimental observations, and the model was able to verify that the three types of cracks evolved from these particles were mainly associated with the thickness and width of the pre-fractured particles, though the particle geometry and grain orientation could also affect the behaviors of fatigue crack initiation at the particles. When the widths of the particles were less than 15 μm, like in most high strength Al alloys, the simulated results confirmed that the crack type was only associated with the particle thickness, consistent with the experimental results in AA2024-T351 alloys with a strong rolling texture. The lives for the SFCs to reach 0.5 mm in length were quantified with the model in the AA2024 alloy, revealing that there was a bimodal distribution in the life spectrum calculated, with the longer life peak being related to larger twist angles of crack deflection at the first GB the cracks encountered and the shorter life peak being associated with small twist angles (< 5°) at the first GB. The model further demonstrated the influence of grain structure on SFC growth by considering two different grain structures with the same initial short crack, namely, a layered grain structure with only the primary GBs perpendicular to the surface and the layered grains with both primary and secondary GBs. Depending on their positions and geometry, the secondary GBs could still exert a strong retarding effect on SFC growth on surface. The model was validated by matching to the growth rate measured on surface of a SFC in an AA8090 Al-Li alloy. Good consistency was achieved between the simulated and experimentally measured growth rates when both the primary and secondary GBs were considered in the model. The model developed in this study exhibits its potential applications to optimizing the microstructure and texture in alloys to enhance their fatigue resistance against fatigue crack growth, and to satisfactory life prediction of engineering alloys.
65

Influence of crystallographic orientation in normal and sliding contacts

Dawkins, Jeremy James 19 May 2008 (has links)
The aim of this study is to evaluate a methodology for modeling the influence of crystallographic grain orientation on key parameters in normal and sliding contacts. The simulations of interfering cylindrical asperities, using finite element analysis, were conducted using two different plasticity models for copper: a conventional isotropic, homogeneous J2 plasticity model and a continuum crystal plasticity model. A normal contact study was conducted in which crystallographic orientation effects on different parameters were investigated. The model was then adapted for sliding contacts, which allowed other parameters such as energy dissipation to be investigated. Using crystal plasticity, the dependence of crystallographic orientation on plastic deformation and energy dissipation can be determined. The relative trends predicted using crystal plasticity are consistent with experiments that show friction depends on crystallographic orientation when plastic deformation is one of the primary energy dissipation mechanisms.
66

Photocatalytic TiO2 thin films for air cleaning : Effect of facet orientation, chemical functionalization, and reaction conditions

Stefanov, Bozhidar January 2015 (has links)
Poor indoor air quality is a source of adverse health effects. TiO2 coatings deposited on well-illuminated surfaces, such as window panes, can be used to fully mineralize indoor air pollutants by photocatalysis. In such applications it is important to ensure stable photocatalytic activity for a wide range of operating conditions, such as relative humidity and temperature, and to avoid deactivation of the catalyst. In this thesis photocatalytic removal of the indoor-pollutant acetaldehyde (CH3CHO) on nanostructured TiO2 films is investigated, and in particular it is proposed how such films can be modified and operated for maximum performance. Catalyst deactivation can be reduced by purposefully changing the surface acidity of TiO2 by covalently attaching SO4 to the surface. Moreover, the overall photocatalytic activity on anatase TiO2 films can be improved by increasing the fraction of exposed reactive {001} surfaces, which otherwise are dominated by {101} surfaces. In the first part of the thesis mode-resolved in-situ FTIR is used to elucidate the reaction kinetics of CH3CHO adsorption and photo-oxidation on the TiO2 and SO4 – modified TiO2 surfaces. Surface concentrations of main products and corresponding reaction rates were determined. Formate is the major reaction product, whose further oxidation limits the complete oxidation to gaseous species, and is responsible for photocatalyst deactivation by site inhibition. The oxidation reaction is characterized by two reaction pathways, which are associated with two types of surface reaction sites. On the sulfate modified TiO2 catalyst fewer intermediates are accumulated, and this catalyst resists deactivation much better than pure TiO2. A hitherto unknown intermediate – surface-bound acetaldehyde dimer with an adsorption band at 1643 cm−1 was discovered, using interplay between FTIR spectroscopy and DFT calculations. The second part of the thesis treats the effect of increasing the relative abundance of exposed {001} facets on the photocatalytic activity of anatase TiO2 films prepared by DC magnetron sputtering. A positive effect was observed both for liquid-phase photo-oxidation of methylene blue, and for gas-phase photocatalytic removal of CH3CHO. In both cases it was found that the exposed {001} surfaces were an order of magnitude more reactive, compared to the {101} ones. Furthermore, it was found that the reactive films were more resilient towards deactivation, and exhibited almost unchanged activity under varying reaction conditions. Finally, a synergetic effect of SO4 – modification and high fraction of exposed {001} surfaces was found, yielding photocatalysts with sustained high activity. The results presented here for facet controlled and chemically modified TiO2 films are of interest for applications in the built environment for indoor air purification and as self-cleaning surfaces. / GRINDOOR
67

Analysis of the microstructure transformation (wel formation) in pearlitic steel used in relevant engineering wear systems. / Análise da transformação microestrutural (formação da camada branca) em aço perlítico utilizado em relevantes sistemas de desgaste em engenharia.

Juan Ignacio Pereira Agudelo 14 May 2018 (has links)
In this thesis, the behavior of pearlitic steel was characterized under controlled wear conditions in the laboratory and service conditions in two ore mining stages, comminution and transportation. The thesis consists in three experimental chapters, divided according to the tribosystems analyzed. On all the chapters Electro Microscopy techniques for the microstructural analysis were employed. Scanning Electron Microscopy (SEM), Focused Ion Beam (FIB-SEM), Electron Backscatter Diffraction (EBSD) and Transmission Electron Microscopy (TEM) were used. The first experimental chapter shows the analysis of the pearlite under abrasive wear with loose abrasive particles in multi-events conditions. The sample was taken from Semi-Autogenous Grinding mills (SAG) and experimental simulation was carried out in laboratory using the Dry Sand Rubber Wheel Abrasion Test (DSRW). The results show a polycrystalline layer formation in both cases, characterized by ultra-fine grains of ferrite in the layer closer to the surface. It was also concluded that the DSRW can simulate the wear produced on field (superficial and microstructural features) in conditions of higher normal load than recommended by the ASTM Standard G65. The second experimental chapter explores the characterization of the microstructure after the indenter pass in scratch test using two conditions of normal load applied and five sequences of scratch. The microstructural analysis shows the formation of two subsuperficial layers identified by the level of the microstructural alterations. In the subsuperficial layer (close to the surface), the formation of new ultra-fine grains of ferrite was observed. A second layer was observed deeper in the sample and denominated as layer of the microstructure transition, characterized by the combination of deformed (reduction of the interlamellar spacing) and pearlite colonies not affected plastically by the mechanical loading. On this layer, the crystallographic texture in RD // in samples tested at 4 N (normal load) and one-pass scratch was determined. Later, on this chapter, the microstructure in a ground rail (industrial procedure characterized as a multi-event scratch test) was analyzed. Two grinding conditions were used for the analysis with variation of the grinding linear speed and load on the grinding stones (discs). The combination of low grinding speed and high load promotes a higher deformed layer formation beneath the patch zone and low randomized orientation of the pearlite colonies. Finally, in the third experimental chapter, the pearlitic characterization was concluded with the study of samples of railway wheel and rail under wear in service and Rolling Contact Fatigue (RCF) in laboratory. The laboratorial simulation was carried out using the twin-disc rolling contact tribometer with a variation of number of cycles. The characterization of railway wheel shows that the WEL is characterized by levels of breaking and aligned cementite and zones with dissolution of the carbon atom in the ferrite to form the supersaturated carbon ferrite. The polycrystalline ferrite formation (ultra-fine grains) in the sub-superficial layer and it was identified a preferential orientation of RD // in the layer of microstructural transition. The results of the laboratory test show surface crack nucleation and propagation at low angle in the more severe deformed layer. The microstructure of the layer consists in polycrystalline ferrite and the cementite dissolution. / Nesta tese foi caracterizado o comportamento do aço perlítico em condições controladas de desgaste em laboratório e em serviço em dois estágios do processo de mineração de minério, cominução e transporte ferroviário. A tese consiste em três capítulos experimentais divididos segundo o tribosistema analisado. Em todos os capítulos do trabalho foi utilizada a técnica de microscopia eletrônica para análise microestrutural. Foi utilizado Microscopia eletrônica de varredura (MEV), Focused Ion Beam (FIB-SEM), Electron Backscatter Diffraction (EBSD) e Microscopia eletrônica de transmissão (MET). O primeiro capítulo experimental mostra a análise da perlita in condições de desgaste abrasivo com partículas soltas em eventos múltiplos. As amostras foram tiradas de um moinho semi-autógeno (SAG) e realizada uma simulação experimental do desgaste em condições controladas usando o tribômetro de roda de borracha (RWAT). Os resultados mostraram a formação de camada branca em ambas as condições de análise, consistindo em uma camada poli cristalina caracterizada pela formação de grãos ultrafinos na camada mais próxima da superfície de desgaste. Também foi concluído que a roda de borracha pode simular o desgaste produzido nos moinhos SAG tanto nas características superficiais quanto microestruturais em condições de maior severidade as comumente utilizadas na norma ASTM G65 (procedimento B). O Segundo capítulo experimental explora a caracterização da microestrutura depois da passagem do endentador no ensaio de riscamento (scratch test) utilizando duas condições de carga normal aplicada e 5 sequências de riscamento. A análise microestrutural mostrou a formação de duas camadas subsuperficiais identificadas pelo nível de alteração microestrutural. Na camada mais próxima da superfície de desgaste foi observada a formação de grãos ultrafinos de ferrita. A segunda camada identificada mais profundamente na amostra, denominada como camada de transição, é caracterizada pela combinação de colônias deformadas (redução do espaçamento interlamelar) e camadas não afetadas pelos esforços produzidos no contato. Nesta camada foi determinada a texturização em direção RD // nas amostras testadas a 4 N (carga normal aplicada) e uma passada. Posteriormente à análise de riscamento foi caracterizada a microestrutura de uma amostra tirada de um trilho esmerilhado (processo industrial que pode ser considerado como aplicação do ensaio de riscamento). Foram consideradas duas condições de esmerilhamento com variação de velocidade de esmerilhamento (deslocamento linear do veículo esmerilhador) e potência dos motores dos rebolos usada no procedimento. A combinação de baixa velocidade de esmerilhamento e alta potência nos motores controladores dos rebolos promoveu uma grande deformação nas camadas subsuperficiais na região de contato e uma baixa aleatoriedade das orientações cristalográficas das colônias de perlita. Finalmente, no capítulo três, a caracterização da microestrutura perlitica foi finalizada com o estudo de amostras de roda e trilho em condições de desgaste em campo e de Rolling Contact Fatigue (RCF) em ensaios de laboratório. A simulação experimental foi realizada utilizando o tribômetro twin-disc rolling (configuração disco-disco) com variação do número de ciclos. A caracterização da roda ferroviária mostrou a formação da camada branca caracterizada por níveis de cementita fraturada e alinhada em direção do movimento de rolamento/deslizamento com áreas de dissolução do átomo de carbono na ferrita formando uma ferrita supersaturada. Foi identificado a formação de policristais de ferrita (grãos ultrafinos) na camada mais superficial e uma orientação preferencial RD // na camada de transição. Os resultados dos ensaios de laboratório mostraram a nucleação de trincas superficiais se propagando a baixo ângulo na camada branca. A transformação microestrutural dessa camada após ensaios de laboratório consiste em policristais de ferrita e dissolução da cementita.
68

Relação entre nanomorfologia e reatividade de eletrodos não-enzimaticos modificados para a determinação de analitos de interesse biológico / Relationship between nanomorphology and reactivity of electrodes modified non-enzymatic for the determination of analytes of biological interest

Fabián Andree Cerda Pastrián 17 August 2018 (has links)
Na constante busca de novas estratégias para melhorar a atividade catalítica, foi que a começos do século passado, a síntese de nanopartículas de formato controlado, tornou-se em um dos acontecimentos que revolucionaram a abordagem catalítica da Química, criando assim a linha da nanociência, onde com a síntese de nanopartículas de formato ao nível nano, é possível controlar as propriedades catalíticas dos materiais a nível macroscópico. O presente trabalho apresenta, a síntese de nanopartículas de óxido cuproso (NPs-Cu2O) com faces cristalográficas controladas. Foi possível sintetizar estruturas cúbicas, esféricas, e octaédricas, sendo os cubos e octaedros os que possuem faces cristalográficas de tipo (100) e (111), respectivamente. Entretanto, as esferas possuem uma mistura entre ambas das faces. As propriedades catalíticas das NPs-Cu2O foram testadas eletroquimicamente mediante uma reação modelo de detecção de glicose. As NPs-Cu2O, foram sintetizadas em médio básico com cloreto de cobre (CuC12) como percursor, posteriormente com concentrações diferentes de cloridrato de hidroxilamina (NH2OHoHCI) foram obtidas NPs-Cu2O com estrutura cúbica, octaédrica e esférica. Posteriormente, foram imobilizadas numa superfície de eletrodo de carbono vítreo, mediante a técnica de casting. A oxidação catalítica da glicose, permitiu observar que o desempenho da estrutura cúbica fossesuperior, com uma sensibilidade de 442 ± 7 &#181;A mM-1 cm-2, enquanto as estruturas esféricas e octaédricas foram de 165 ± 3 &#181;A mM-1 cm-2 e 38 ± 1 &#181;A mM-1 cm-2, respectivamente. Seguido as NPs-Cu2O, foram testadas na presença de Ácido Ascórbico (AA) e Ácido Úrico (UA), foi observado que os cubos possuem uma seletividade única, comparada com as outras estruturas. Dito comportamento foi estudado com Analise computacional (DFT), onde foi possível de observar que a distribuição entre átomos de Cobre e Oxigênio, determina a seletividade do material. Numa segunda etapa, para entender a importância da conservação estrutural e integridade morfológica, foram testadas as NPs-Cu2O, aos diferentes dias após de ser sintetizadas, observando claramente uma relação entre estrutura e atividade catalítico. Foi observado que nas estruturas cúbicas o deterioro foi maior em comparação com as outras estruturas, isto acompanhado mediante DFT, foi determinado que estrutura cúbica apresenta uma maior interação com o oxigênio, provocando assim, que a rápida transformação de Cu(I) para Cu(II), como CuO. Por último as NPs-Cu2O, foram testadas por espectroscopia de fotoelétrons excitados por raios X (XPS), este analise ajudou a compreender que o desempenho catalítico, não estava relacionado com a formação de Cu (III). Estes resultados foram apoiados pelos resultados obtidos pela espectroscopia de infravermelho in situ (FTIR), já que nessa análise foi possível de observar como o estabilizante (SDS), foi determinante em cada estrutura. / In the constant search for new strategies by advance of catalytic activities, was that at the beginning of the last century the synthesis of nanoparticles in a controlled format, became one of the events that revolutionized the catalytic approach of Chemistry, thus creating a line of nanoscience, where with the synthesis of nanoparticles of format at the nano level, it is possible to control catalytic properties of materiais at the macroscopic level. Consequently, the present work the synthesis of cuprous oxide nanoparticles (Cu2O-NPs), with crystallography faces welldefined. It was possible synthesize cubic, spherical and octahedral structure, the cubes and octahedrons being those having crystallographic faces of type (100) and (111), respectively. Meanwhile, the spheres have a mixture between both faces. The catalytic properties of Cu2O-NPs were electrochemically tested by a model glucose detection reaction. The Cu2O-NPs were synthetized in basic solution with cooper chlorate (CuCl2) like precursor, after with different concentration of hydroxylamine hydrochloride (NH2OH&#183; HCl) were obtain cubic, spheres and octahedral structure. Posteriorly, were immobilized in a glassy carbon surface, through the technique of casting. The catalyst oxidation of glucose allowed observe that the performance of cubic structure was superior, with a sensibility of 442 ± 7 &#181;A mM-1 cm-2, while the spheres and octahedral structure were 165 ± 3 &#181;A mM-1 cm-2 e 38 ± 1 &#181;A mM-1 cm-2, respectively. Following the Cu2O-NPs, they were tested in the presence of Ascorbic Acid (AA) and Uric Acid (UA), it was observed that the cubes have a unique selectivity compared to the other Cu2O-NPs structure. This behavior was studies with com putational analysis (DFT), where it was possible to observed that the distribution between copper and oxygen atoms determines the selectivity of material. In a second step, to understand the importance of structure conservation and morphological integrity, Cu2O-NPs were tested at different days after being synthesized, noting clearly a relation between structure and catalytic activity. It was observed that cubic structure the deterioration was greater in comparation with the other structures, this being accompanied by DFT, it was determinate that cubic structure show a greater interaction with the oxygen, thus provoking that rapid transformation of Cu (I) to Cu(II), like CuO. Finally, the Cu2O-NPs were tested by x-ray excited photoelectron spectroscopy (XPS), this analysis helped to understand the catalytic activity was not related to Cu (III) formation. These results were supported by those obtained by in situ (FTIR), since in this analysis it was possible to observe how the stabilizer (SDS) was determinant in each structure.
69

Studium feroelektrických materiálů / Study of ferroelectric materials

Kos, Lukáš January 2012 (has links)
This work is focused on the study of perovskite ferroelectric materials group and monitoring changes their dielectric parameters in temperature and frequency dependence Is described scrystallographic systems of barium titanate and their influence on material properties. The measured values are mathematically interpreted using the Curie – Weiss law and discussed about the influence of strontium titanite on important dielectric parameters.
70

Enhanced Carrier Mobility in Hydrogenated and Amorphous Transparent Conducting Oxides

January 2020 (has links)
abstract: The origins of carrier mobility (μe) were thoroughly investigated in hydrogenated indium oxide (IO:H) and zinc-tin oxide (ZTO) transparent conducting oxide (TCO) thin films. A carrier transport model was developed for IO:H which studied the effects of ionized impurity scattering, polar optical phonon scattering, and grain boundary scattering. Ionized impurity scattering dominated at temperatures below ~240 K. A reduction in scattering charge Z from +2 to +1 as atomic %H increased from ~3 atomic %H to ~5 atomic %H allowed μe to attain >100 cm^2/Vs at ~5 atomic %H. In highly hydrogenated IO:H, ne significantly decreased as temperature increased from 5 K to 140 K. To probe this unusual behavior, samples were illuminated, then ne, surface work function (WF), and spatially resolved microscopic current mapping were measured and tracked. Large increases in ne and corresponding decreases in WF were observed---these both exhibited slow reversions toward pre-illumination values over 6-12 days. A hydrogen-related defect was proposed as source of the photoexcitation, while a lattice defect diffusion mechanism causes the extended decay. Both arise from an under-coordination of the In. An enhancement of μe was observed with increasing amorphous fraction in IO:H. An increase in population of corner- and edge-sharing polyhedra consisting of metal cations and oxygen anions is thought to be the origin. This indicates some measure of medium-range order in the amorphous structure, and gives rise to a general principle dictating μe in TCOs---even amorphous TCOs. Testing this principle resulted in observing an enhancement of μe up to 35 cm^2/Vs in amorphous ZTO (a-ZTO), one of the highest reported a-ZTO μe values (at ne > 10^19 cm^-3) to date. These results highlight the role of local distortions and cation coordination in determining the microscopic origins of carrier generation and transport. In addition, the strong likelihood of under-coordination of one cation species leading to high carrier concentrations is proposed. This diverges from the historical indictment of oxygen vacancies controlling carrier population in crystalline oxides, which by definition cannot occur in amorphous systems, and provides a framework to discuss key structural descriptors in these disordered phase materials. / Dissertation/Thesis / Doctoral Dissertation Materials Science and Engineering 2020

Page generated in 0.0583 seconds