331 |
Phase formation processes in the synthesis of boron nitride thin films / Phasenbildungsprozesse bei der Synthese von dünnen Filmen aus BornitridEyhusen, Sören 27 October 2005 (has links)
No description available.
|
332 |
Optimisation d'un code de dynamique des dislocations pour l'étude de la plasticité des aciers ferritiques / Improvements on Dislocation Dynamics Codes for the study of irradiated RPV ferritic steel's plasticityGarcia Rodriguez, Daniel 15 February 2011 (has links)
Ces travaux de thèse s’inscrivent au sein d’une démarche multi-échelles visant à améliorer lacompréhension de la fragilisation par l’irradiation de l’acier de cuve. Dans ce cadre, nous nousintéressons à la description de la mobilité des dislocations dans la ferrite, l’une des entrées clépour les codes de dynamique de dislocations (DD). Nous présentons ainsi une revuebibliographique exhaustive des différentes théories et expressions de la mobilité, à partir delaquelle nous proposons une nouvelle expression pour les dislocations vis. Cette loi, utilisablepour la première fois dans le régime de transition ductile-fragile, permet de reproduire lesprincipales observations expérimentales disponibles à ce niveau. Finalement, nous montronsles améliorations apportées au code de DD Tridis BCC 2.0, qui intègrent la nouvelle loi demobilité avec une nouvelle gestion des segments de dislocation permettant de stabiliser etaccélérer des simulations complexes avec prise en compte du glissement dévié. / The present work is part of a larger multi-scale effort aiming to increase knowledge of thephysical phenomena underneath reactor pressure vessel irradiation embrittlement. Withinthis framework, we focused on the description of dislocation mobility in BCC iron, which is oneof the key inputs to dislocation dynamics (DD) simulation codes. An extensive bibliographicreview shows that none of the available expressions can deal with the ductile-fragile transitiondomain of interest. Here, a new screw mobility law able to reproduce the main experimentalobservations is introduced building on the previous models. The aforementioned law is usedtogether with an improved dislocations dynamics code Tridis BCC 2.0, featuring bothperformance and dislocations segments interaction management enhancements, that allowsfor complex DD simulations of BCC iron structures with cross-slip
|
333 |
Možnosti uplatnění metody dílčího oslabení výkonu v praxi / The Possibilities Exercise of Method Partial Weakening Operation in PractisePROKOPCOVÁ, Miloslava January 2008 (has links)
The method partial weakening operation evolves cognitive function by the children in all areas cognition: optical and acoustic sensation, cubic orientation, connecting of sensation especially optical and acoustical (intermodalita), gradual thinking from simplest to more complicated (serialita), also evolve motorial abilities, speech and communication. At the same time also evolve social relations, moral-ethic principles and administer to general evolvement children{\crq}s personality in preschool and younger school age. The graduation these is structured to chapters. The first to third chapter i. a. treats of history of method, aetiology, clinical symptoms, appearance, diagnostics and retrieval partial weakening operation. In the fourth chapter are analysed psychological characteristics preschool children. The fifth chapter reflects testing of optical disabled and auditory disabled children. The sixth chapter reflects the ethic dilemma work with children. The final chapter reflects expertly treated cases.
|
334 |
A Computational Study of Structural and Thermo-Mechanical Behavior of Metallic NanowiresSutrakar, Vijay Kumar January 2013 (has links) (PDF)
This thesis is an attempt to understand ways to improve thermo-mechanical and structural properties of nano-structured materials. A detailed study on computational design and analysis of metallic nanowires is carried out. Molecular dynamic simulation method is applied. In particular, FCC metallic nanowires, NiAl, and CuZr nanowires are studied. Various bottom-up approaches are suggested with improved structural and thermo¬mechanical properties.
In the first part of the thesis, Cu nanowires are considered. Existence of a novel and stable pentagonal multi-shell nanobridge structure of Cu under high strain rate tensile loading is reported. Such a structure shows enhanced mechanical properties. A three-fold pseudo-elastic-plastic shape recovery mechanism in such nanowires is established. This study also shows that the length of the pentagonal nanobridge structures can be characterized by its inelastic strain. It is also reported that an initial FCC structure is transformed into a new HCP structure. The evidence of HCP structure is confirmed with the help of experimental data published in the literature. Subsequent to the above study, a novel mechanism involving coupled temperature-stress dependent reorientation in FCC nanowires is investigated. A detailed map is generated for size dependent stress-temperature induced solid-solid reorientation in Cu nanowires.
In the second part of the thesis, deformation mechanisms in NiAl based intermetallic nanowires are studied. A novel mechanism of temperature and cross-section dependent pseudo-elastic/pseudo-plastic shape and strain recovery by an initial B2 phase of NiAl nanowire is reported. Such a recoverable strain, which is as high as ~ 30%, can potentially be utilized to realize various types of shape memory and strain sensing phenomena in nano-scale devices. An asymmetry in tensile and compressive yield strength behavior is also observed, which is due to the softening and hardening of the nanowires under tensile and compressive loadings, respectively. Two different deformation mechanisms dominated by twinning under tension and slip under compression are found. Most interestingly, a superplastic behavior with a failure strain of up to 700% in the intermetallic NiAl nanowires is found to exist at a temperature of 0.36Tm. Such superplastic behavior is attributed to the transformation of the nanowire from a crystalline phase to an amorphous phase after yielding of the nanowire.
In the last part the work, another type of nanowires having Cu-Zr system is considered. A novel stress induced martensitic phase transformation from an initial B2 phase to BCT phase in a CuZr nanowire under tensile loading is reported. It is further shown that such a stress induced martenistic phase transformation can be achieved under both tensile as well as compressive loadings. Tensile-compressive asymmetry in the stress-strain behavior is observed due to two different phase transformation mechanisms having maximum transformation strains of ~ 5% under compressive loading and ~ 20% under tensile loading. A size and temperature dependent tensile phase transformation in the nanowire is also observed. Small nanowires show a single step tensile phase transformation whereas the nanowires with larger size show a two step deformation mechanism via an intermediate R-phase hardening followed by R-phase yielding. A study of energetic behavior of these nanowires reveals uniform distribution of stress over the nanowire cross-section and such stress distribution can lead to a significant improvement in its thermo-mechanical properties. Similar improvement is demonstrated by designing the nanowires via manipulating the surface configuration of B2-CuZr system. It is found that the CuZr nanowires with Zr atoms at the surface sites are energetically more stable and also give a uniform distribution of stresses across the cross-section. This leads to the improvement in yield strength as well as failure strain. An approach to design energetically stable nano-structured materials via manipulating the surface configurations with improved thermo-mechanical properties is demonstrated which can help in fundamental understanding and development of similar structures with more stability and enhanced structural properties. Further ab-initio and experimental studies on the confirmation of the stability of the nanowires via manipulating the surface site is an open area of research and related future scopes are highlighted in the closure.
|
335 |
Etude thermodynamique des liquides ioniques : applications à la protection de l'environnement / Thermodynamic study of ionic liquids : applications to the environmental protectionRevelli, Anne-Laure 17 September 2010 (has links)
De nos jours, remplacer les solvants organiques utilisés traditionnellement dans l'industrie chimique par une nouvelle génération de solvants moins toxique, moins inflammable et moins polluante est un défi considérable. Les liquides ioniques, sels liquides qui satisfont ces critères, sont envisagés comme alternatives. Le but de ce travail est d'étudier le comportement des liquides ioniques en présence de composés organiques ou de gaz afin d'établir leur domaine d'applications dans le génie des procédés.Dans un premier temps, une étude chromatographique présente les interactions entre composés organiques et les liquides ioniques. Les données de rétention ont permis d'estimer la sélectivité à dilution infinie de plusieurs liquides ioniques pour différents problèmes de séparation. Un modèle de solvatation <<GC-LSER>> a été développé afin de prédire les coefficients de partage de solutés dans des liquides ioniques classiques et fonctionnalisés. Ensuite, l'étude des équilibres liquide-liquide de systèmes ternaires ont permis d'évaluer l'efficacité de trois liquides ioniques pour trois problèmes de séparation fréquemment rencontrés dans l'industrie chimique (extraction des composés aromatiques, du thiophène ou des alcools linéaires). Les valeurs des sélectivités et des coefficients de distribution élevées indiquent que les liquides ioniques étudiés peuvent remplacer les solvants traditionnels. Enfin, les performances des liquides ioniques pour la capture des gaz à effet de serre sont évaluées grâce à des mesures de solubilités du dioxyde de carbone et du protoxyde d'azote dans les liquides ioniques sous hautes pressions. Les données expérimentales ont été utilisées afin d'étendre le modèle PPR78 (Predictive 1978, Peng-Robinson equation of state) aux systèmes {CO2+ liquide ionique} / Nowadays, replacement of conventional organic solvents by a new generation of solvents less toxic, less flammable and less polluting is a major challenge for the chemical industry. Ionic liquids have been widely promoted as interesting substitutes for traditional solvents. The aim of this work is to study the behavior of ionic liquids with organic compounds or gases in order to determine their range of applications in process engineering.First, interactions between organic compounds and ionic liquids are studied using inverse gas chromatography. The activity coefficients at infinite dilution are used to calculate capacity and selectivity of different ionic liquids for different separation problems. A solvation model <<GC-LSER>> is proposed in order to estimate the gas-to-ionic liquid partition coefficients in alkyl or functionalized ionic liquids. Then, liquid-liquid equilibria measurements of ternary systems were carried out in order to evaluate the efficiency of three ionic liquids for three separation problems frequently encountered in chemical industry (extraction of aromatic compounds, thiophene or linear alcohols). The high values of distribution coefficients and selectivities indicate that the investigated ionic liquids could replace the traditional solvents. Finally, the performance of ionic liquids for greenhouse gases capture was examinated through solubility measurements of carbon dioxide and nitrous oxide in ionic liquids at high pressure. The experimental data is used in order to extend the model PPR78 (Predictive 1978, Peng-Robinson equation of state) to systems containing {CO2+ ionic liquid}
|
336 |
Role Of Stacking Fault Energy On Texture Evolution In Micro- And Nano-Crystalline Nickel-Cobalt AlloysRadhakrishnan, Madhavan 12 1900 (has links) (PDF)
Plastic deformation of metals and alloys are invariably accompanied by the development of texture. The origin of texture is attributed to the deformation micro-mechanisms associated with processing. The face-centered cubic (FCC) metals and alloys are known to exhibit two distinct types of textures when subjected to large strain rolling deformation, namely, (i) Cu-type texture, commonly seen in high/medium stacking fault energy (SFE) materials, (ii) Bs-type texture in low SFE materials. The circumstances that could result in the formation of Bs-type texture in low SFE materials still remains an open question and no definite mechanism has been uniquely agreed upon.
Apart from the SFE, grain size could also influence the deformation mechanism and hence the deformation texture. It is well known that in materials with grain sizes less than 100 nm (referred to as nano-crystalline materials), the microstructures contain large fraction of grain boundaries. This subsequently introduces a variety of deformation mechanisms in the microstructure involving grain boundary-mediated processes such as grain boundary sliding and grain rotation, in addition to slip and twinning. A clear understanding of texture evolution in nano-crystalline materials, particularly at large strains, is a topic that remains largely unexplored.
The present work is an attempt to address the aforementioned issues pertaining to the evolution of deformation texture, namely, (i) the effect of SFE and (ii) the effect of grain size, in FCC metals and alloys. Nickel-cobalt alloys are chosen as the model system for the present investigation. The addition of cobalt to nickel leads to a systematic reduction of SFE as a function of cobalt content. In this thesis, three alloys of Ni-Co system have been considered, namely, nickel – 20 wt.% cobalt, nickel – 40 wt.% cobalt and nickel – 60 wt.% cobalt. For a comparison, pure nickel has also been subjected to similar study.
Chapter 1 of the thesis presents a detailed survey of literature pertaining to the evolution of rolling textures in FCC metals and alloys, and chapter 2 includes the details of the experimental techniques and characterization procedures, which are commonly employed for the entire work.
Chapter 3 addresses the effect of stacking fault energy on the evolution of rolling texture. The materials subjected to study in this chapter are microcrystalline Ni-Co alloys. The texture evolution in Ni-20Co is very similar to pure Ni, and a characteristic Cu-type rolling texture is observed. The evolution of texture in these materials is primarily attributed to the intense dislocation activity throughout the deformation stages. In Ni-40Co, a medium SFE material, the rolling texture was predominantly Cu-type up to a strain of ε = 3 (95% thickness reduction). However, beyond this strain level, namely at ε = 4 (98%), the texture gets transformed to Bs-type with orientations maxima predominantly close to Goss ({110} <001>) position. Simultaneously, the Cu component which was dominant until 95% reduction has completely disappeared. The analysis of microstructures indicate that deformation is mostly accommodated by dislocation slip up to 95%, however, at ε > 3, Cu-type shear bands get initiated, preferably in the Cu-oriented ({112} <111>) grains. The sub-grains within the shear bands show preferred orientation towards Goss, which indicates that the Cu component should have undergone transformation and resulted in high fraction of Goss component. In Ni-60Co alloy, Bs-type texture forms in the early stages of deformation (ε ~ 0.5) itself and further deformation results in strengthening of the texture with an important difference that the maximum in orientation distribution has been observed at a location close to Goss component, rather than at exact Bs-location. The development of Bs-type texture is accompanied by the complete absence of Cu and S components. Extensive EBSD analyses show that the deformation twinning gets initiated beyond 10% reduction and was found extensively in most of the grains up to 50% reduction. At higher strains, tendency for twinning ceases and extensive shear banding is observed. A non-random distribution of orientations close to Goss orientation was found within the shear bands. The near-Goss component in the Ni-60Co alloy can be explained on the basis of deformation twinning and shear banding. Thus, a reasonable understanding of the deformation texture transition in the extreme SFE range has been developed.
In chapter 4, the effect of fine grain size on the evolution of rolling texture has been addressed. Nanocrystalline (nc) nickel-cobalt alloys with a mean grain size of ~20 nm have been prepared by pulse electro-deposition method. For a comparison, nc Nickel (without cobalt) with similar grain size has also been deposited. For all the materials, a weakening of the initial fiber texture is observed in the early stage of room temperature rolling (ε ~ 0.22). A combination of equiaxed grain microstructure and texture weakening suggests grain boundary sliding as an operative mechanism in the early stage of rolling. At large strain (ε = 1.2), Ni-20Co develops a Cu-type texture with high fractions of S and Cu components, similar to pure Ni. The texture evolution in Ni-40Co and Ni-60Co alloys is more towards Bs-type. However, the texture maximum occurs at a location 10° away from the Goss. The evolution of Cu and S components in nc Ni-60Co alloy takes place simultaneously along with the α-fiber components during rolling. Microstructural investigation by TEM indicates deformation twinning to be more active in all the materials up to 40% reduction. However, no correlation could be drawn between the texture evolution and the density of twins. The deformation of nc Ni-20Co alloy, is also accompanied by significant grain growth at all the stages of rolling. The increase in grain size, subsequently, renders the texture to be of Cu-type. However, Ni-40Co and Ni-60Co alloys show high grain stability. The absence of strain heterogeneities such as shear bands, and the lack of significant fraction of deformation twins indicate that the observed Bs-type texture could be due to planar slip. The increase in deformation beyond 70% reduction caused a modest reduction in the intensity of deformation texture. The microstructural observation indicates the occurrence of restoration mechanisms such as recovery/ recrystallization at large strains.
The overall findings of the investigation have been summarized in chapter 5. The deformation mechanism maps relating stacking fault energy with amount of strain and with grain size are proposed for micro- and nano- crystalline materials respectively.
|
337 |
Analýza variability srdečního rytmu pomocí rekurentního diagramu / Reccurence plot for heart rate variability analysisFraněk, Pavel January 2013 (has links)
The aim of this thesis is to describe the variability of cardiac rhythm and familiarity with the methods of the analysis, ie by monitoring changes in heart rhythm electrogram signal recording and using the methods in the time domain using recurrent diagram. The work describes the quantification of the methods and possibilities of quantifiers in the evaluation of heart rate variability analysis. It also describes the clinical significance of heart rate variability and diagnostic capabilities changes of heart rate variability caused by ischemic heart disease. The practical part describes how to create applications in Matlab to calculate the quantifiers analysis of heart rate variability in the time domain using recurrent diagram. The calculation was made of the positions R wave elektrogram signal isolated rabbit hearts. The calculated values of quantifiers both methods were statistically evaluated and discussed.
|
338 |
Vytvoření interaktivních pomůcek z oblasti 2D počítačové grafiky / Teaching aids for 2D computer graphicsMalina, Jakub January 2013 (has links)
In this master’s thesis we focus on the basic properties of computer curves and their practical applicability. We explain how the curve can be understood in general, what are polynomial curves and their composing possibilities. Then we focus on the description of Bezier curves, especially the Bezier cubic. We discuss in more detail some of fundamental algorithms that are used for modelling these curves on computers and then we will show their practical interpretation. Then we explain non uniform rational B-spline curves and De Boor algorithm. In the end we discuss topic rasterization of segment, thick line, circle and ellipse. The aim of master’s thesis is the creation of the set of interactive applets, simulating some of the methods and algorithm we discussed in theoretical part. This applets will help facilitate understanding and will make the teaching more effective.
|
339 |
Modelování a zobrazování pomocí blobů / Modelling and Rendering Using BlobsBaštek, Jozef January 2011 (has links)
This thesis deals with blobs modeling and visualizing (iso-surfaces, implicit-surfaces). It includes implementation of full-featured editor of these objects. It provides real-time operations over surfaces. The work also contains its motivation - where this modeling technique comes from, required equations and computations needed for surface rendering and algorithms used for blobs visualization.
|
340 |
Joining Polycrystalline Cubic Boron Nitride and Tungsten Carbide by Partial Transient Liquid Phase BondingCook, Grant O., III 16 December 2010 (has links) (PDF)
Friction stir welding (FSW) of steel is often performed with an insert made of polycrystalline cubic boron nitride (PCBN). Specifically, MS80 is a grade of PCBN made by Smith MegaDiamond that has been optimized for the FSW process. The PCBN insert is attached to a tungsten carbide (WC) shank by a compression fitting. However, FSW tools manufactured by this method inevitably fail by fracture in the PCBN. Permanently bonding PCBN to WC would likely solve the fracturing problem and increase the life of PCBN FSW tools to be economically viable. Partial transient liquid phase (PTLP) bonding, a process used to join ceramics with thin metallic interlayers, was proposed as a method to permanently bond PCBN to WC. PTLP bonding is often performed using three layers of pure elements. On heating, the two thin outer interlayers melt and bond to the ceramics. Concurrently, these liquid layers diffuse into the thicker refractory core until solidification has occurred isothermally. A procedure was developed to reduce the number of possible three-layer PTLP bonding setups to a small set of ideal setups using logical filters. Steps in this filtering method include a database of all existing binary systems, sessile drop testing of 20 elements, and a routine that calculates maximum interlayer thicknesses. Results of sessile drop testing showed that the PCBN grade required for this research could only be bonded with an alloy of Ti, Cu, Mg, and Sb. Two PTLP bond setups were tested using this special coating on the PCBN, but a successful bond could not be achieved. However, a PTLP bond of WC to WC was successful and proved the usefulness of the filtering procedure for determining PTLP bond setups. This filtering procedure is then set forth in generalized terms that can be used to PTLP bond any material. Also, recommendations for future research to bond this grade of PCBN, or some other grade, to WC are presented.
|
Page generated in 0.0455 seconds