1 |
Superfícies Completas com Curvatura Gaussiana Constante em H2×R e S2×R / Complete surfaces with constant Gaussian curvature into the H2×R and S2 ×RCINTRA, Adriana Araujo 19 March 2010 (has links)
Made available in DSpace on 2014-07-29T16:02:22Z (GMT). No. of bitstreams: 1
dissertacao_adriana_cintra_matem.pdf: 756254 bytes, checksum: 768c9b84205b306b8b6b935d926878cf (MD5)
Previous issue date: 2010-03-19 / In this work we classify the complete surfaces with constant Gaussian curvature into the H2×R and S2×R.We show that exists a unique complete surface, up to isometries, with
positive constant Gaussian curvature into the H2×R, and greater than one, into the S2×R and that there is no complete surfaces with constant Gaussian curvature K(I) < −1 into the H2×R and S2×R. We prove that even if −1 ≤ K(I) < 0 there are infinite complete surfaces into the H2 ×R with Gaussian curvature K(I) and with additional assumption we prove there is if −1 ≤ K(I) < 0 and 0 < K(I) < 1 there is no exists complete surfaces into S2×R with Gaussian curvature K(I). These results were obtained by Aledo, Espinar and Gálvez and can be found in [1]. / Neste trabalho classificamos as superfícies completas, com curvatura Gaussiana constante, em H2 × R e S2 × R. Mostramos que existe uma única superfície completa, a menos de isometria, com curvatura Gaussiana constante positiva em H2 × R, maior que um, em S2 × R, e que não existe superfície completa com curvatura Gaussiana, K(I) < −1, em H2 × R e S2 × R. Provamos ainda que, se −1 ≤ K(I) < 0, existem infinitas superfícies completas em H2×R com curvatura Gaussiana K(I) e, com hipóteses adicionais, provamos que, se −1 ≤ K(I) < 0 e 0 < K(I) < 1, não existe superfície completa em S2 ×R com curvatura Gaussiana K(I). Estes resultados foram obtidos por Aledo, Espinar e Gálvez e podem ser encontrados em [1].
|
Page generated in 0.0513 seconds