711 |
Půdorysně zakřivené konstrukce podepřené oblouky / Plan curved structures supported by archesTrenz, Jan Unknown Date (has links)
The aim of this doctoral thesis is the research of the plan curved footbridges with the deck supported by arch. The research is preceded by the survey of present findings about arch structures with upper deck. The summary of reasons and difficulties of design of plan curved structures follows. The appropriate approach for design of plan curved structure is searched on the basis of methods for design of straight structure. The design of arch which is subjected to minimal bending moments is emphasised. At first, the structure is designed in the same way as straight structure and the limit plan curvature (for which the method is not suitable anymore) is sought. Then the approach based on method of inversion of suspended cable is examined and adapted for designing of plan curved arch geometry. The approach is thoroughly analysed through calculation model and experimentally verified on physical model in scale 1:10. The process of design, construction and testing of the physical model is described in detail. Measured deformations and stresses are compared with expected behaviour based on numerical analysis. The comparison proves good correlation between calculation and measurement, as well as high load bearing capacity of the structure.
|
712 |
Altering the Gag Reflex via a Palm Pressure Device: Effects of Hand TopologySteiner, Samantha R. 05 May 2014 (has links)
No description available.
|
713 |
Multifunctional Laminated Composites for Morphing StructuresChillara, Venkata Siva Chaithanya 13 September 2018 (has links)
No description available.
|
714 |
On curvature and Hawking radiationChernichenko, Alexsey January 2022 (has links)
Hawking radiation is a phenomenon where the combination of geometry of spacetime around a black hole and quantum effects near its event horizon causes particle emission. Stephen Hawking was one of the first to make computations and conclude that this is valid for every black hole in general. Therefore, the goal of the project was to understand how the presence of a black hole changes geometry of spacetime, explore some of its peculiar properties and, finally, connect it to Hawking radiation. It turns out that one way to describe geometry around a black hole is to use the Schwarzchild metric which fully describes surroundings of a non-rotating and uncharged black hole. Using the so called Klein-Gordon equation and some additional computations one then sees that there’s indeed a particle emission. However, the radiation appears to be observer dependent which is due to curvature near event horizon. Hawking radiation has temperature which happens to be extremely small to detect, but this result reveals the fact that black holes radiate faster as they shrink. However, the time it takes for an arbitrary black hole to evaporate is much longer than the age of the Universe. Encountering those and some other challenges Hawking radiation remains hypothetical. / Hawkingstrålning är ett fenomen där kombinationen av geometri av rumtid runt ett svart hål och kvantmekaniska effekter nära dess händelsehorisont leder till partikel emission. Stephen Hawking var bland de första att göra beräkningar och dra slutsatsen att detta är giltigt för alla svarta hål. Syftet med projektet var därför att förstå hur närvaron av ett svart hål ändrar geometri av rumtid, undersöka dess vissa speciella egenskaper samt anknyta det till Hawkingstrålning. Det visar sig att ett sätt att beskriva geometri kring ett svart hål är att använda Schwarzchild metriken som helt beskriver omgivningen av ett icke roterande och oladdat svart hål .Använder man sig av så kallade Klein-Gordon ekvationen och några ytterligare beräkningar så kommer man till slutsaten att det verkligen finns enemission av partiklar. Emissionen verkar dock vara observatörsberoende på grund av krökning nära händelsehorisont. Hawkingstrålning har temperatur som visar sig vara extremt liten för att upptäcka, men resultaten avslöjar faktumet att svarta hål strålar ut snabbare då de krymper. Tiden det tar för ett godtyckligt svart hål att koka bort är dock mycket längre än åldern of Universum. På grund av dessa och några andra utmanningar återstår Hawkingstrålning hypotetiskt.
|
715 |
Lattice Point Counting through Fractal Geometry and Stationary Phase for Surfaces with Vanishing CurvatureCampolongo, Elizabeth Grace 02 September 2022 (has links)
No description available.
|
716 |
Experimental Studies on the Mechanical Durability of Proton Exchange MembranesLi, Yongqiang 28 December 2008 (has links)
Three testing methods are proposed to characterize properties of fuel cell materials that affect the mechanical durability of proton exchange membranes (PEMs). The first two methods involved measuring the in-plane biaxial strength of PEMs and the biaxial hygrothermal stresses that occur in PEMs during hygrothermal cycles. The third method investigated the nonuniform thickness and compressibility of gas diffusion media which can lead to concentrated compressive stresses in the PEM in the through-plane direction.
Fatigue and creep to leak tests using multi-cell pressure-loaded blister fixtures were conducted to obtain the lifetimes of PEMs before reaching a threshold value of gas leakage. These tests are believed to be more relevant than quasi-static uniaxial tensile to rupture tests because of the introduction of biaxial cyclic and sustained loading and the use of gas leakage as the failure criterion. They also have advantages over relative humidity cycling test because of the controllable mechanical loading. Nafion® NRE-211 membrane was tested at three different temperatures and the time-temperature superposition principle was used to construct a stress-lifetime master curve. Tested at 90°C, extruded Ion Power® N111-IP membrane was found to have longer lifetime than Gore™-Select® 57 and Nafion NRE-211 membranes under the same blister pressure profiles.
Bimaterial specimens fabricated by bonding a piece of PEM to a substrate material were used to measure the hygral stresses, compressive and tensile, in the PEM during relative humidity cycles. The substrate material and its thickness were carefully chosen so that stresses in the PEM could be obtained directly from the curvature of the bimaterial specimen without knowing the constitutive properties of the PEM. Three commercial PEMs were tested at 80°C by cycling the relative humidity between 90% and 0% and by drying the membrane to 0%RH after submersion in liquid water. Stress histories for all three membranes show strong time-dependencies and Nafion® NRE-211 exhibited the largest tensile stress upon drying.
Besides in-plane stresses, hard spots in gas diffusion media (GDM) can locally overcompress PEMs in the out-of-plane direction and cause electrical shorting. In this study, GDM samples sealed with an impermeable Kapton® film on the surface were compressed with uniform air pressure and the nonuniform displacement field was measured with a three-dimensional digital image correlation technique. Hard spots as a result of the nonuniform thickness and compressibility of the GDM were found and their severities as stress risers are evident. Locally, a nominal platen compression (similar to bipolar plate land compression) of 0.68 MPa can lead to compressive stress as large as 2.30 MPa in various hard spots that are in the order of 100s µm to 1 mm in size. / Ph. D.
|
717 |
Environmental and Digital Data Analysis of the National Wetlands Inventory (NWI) Landscape Position Classification SystemSandy, Alexis Emily 27 July 2006 (has links)
The National Wetlands Inventory (NWI) is the definitive source for wetland resources in the United States. The NWI production unit in Hadley, MA has begun to upgrade their digital map database, integrating descriptors for assessment of wetland functions. Updating is conducted manually and some automation is needed to increase production and efficiency. This study assigned landscape position descriptor codes to NWI wetland polygons and correlated polygon environmental properties with public domain terrain, soils, hydrology, and vegetation data within the Coastal Plain of Virginia. Environmental properties were applied to a non-metric multidimensional scaling technique to identify similarities within individual landscape positions based on wetland plant indicators, primary and secondary hydrology indicators, and field indicators of hydric soils. Individual NWI landscape position classes were linked to field-validated environmental properties. Measures provided by this analysis indicated that wetland plant occurrence and wetland plant status obtained a stress value of 0.136 (Kruskal's stress measure = poor), which is a poor indicator when determining correlation among wetland environmental properties. This is due principally to the highly-variable plant distribution and wetland plant status found among the field-validated sites. Primary and secondary hydrology indicators obtained a stress rating of 0.097 (Kruskal's stress measure = good) for correlation. The hydrology indicators measured in this analysis had a high level of correlation with all NWI landscape position classes due the common occurrence of at least one primary hydrology indicator in all field validated wetlands. The secondary indicators had an increased accuracy in landscape position discrimination over the primary indicators because they were less ubiquitous. Hydric soil characteristics listed in the 1987 Manual and NTCHS field indicators of hydric soils proved to be a relatively poor indicator, based on Kruskal's stress measure of 0.117, for contrasting landscape position classes because the same values occurred across all classes.
The six NWI field–validated landscape position classes used in this study were then further applied in a public domain digital data analysis. Mean pixel attribute values extracted from the 180 field-validated wetlands were analyzed using cluster analysis. The percent hydric soil component displayed the greatest variance when compared to elevation and slope curvature, streamflow and waterbody, Cowardin classification, and wetland vegetation type. Limitations of the soil survey data included: variable date of acquisition, small scale compared to wetland size, and variable quality. Flow had limitations related to its linear attributes, therefore is often found insignificant when evaluating pixel values that are mean of selected pixels across of wetland landscape position polygons. NLCD data limitations included poor quality resolution (large pixel size) and variable classification of cover types. The three sources of information that would improve wetland mapping and modeling the subtle changes in elevation and slope curvature that characterize wetland landscapes are: recent high resolution leaf-off aerial photography, high-quality soil survey data, and high-resolution elevation data.
Due to the data limitations and the choice of variables used in this study, development of models and rules that clearly separate the six different landscape positions was not possible, and thus automation of coding could not be attempted. / Master of Science
|
718 |
Twisted K-theory with coefficients in a C*-algebra and obstructions against positive scalar curvature metrics / Getwistete K-Theorie mit Koeffizienten in einer C*-Algebra und Obstruktionen gegen positive skalare KrümmungPennig, Ulrich 31 August 2009 (has links)
No description available.
|
719 |
Převod trojúhelníkových polygonálních 3D sítí na 3D spline plochy / 3D Triangles Polygonal Mesh Conversion on 3D Spline SurfacesJahn, Zdeněk Unknown Date (has links)
In computer graphics we can handle unstructured triangular 3D meshes which are not too usable for processing through their irregularity. In these situations it occurs need of conversion that 3D mesh to more suitable representation. Some kind of 3D spline surface can be proper alternative because it institutes regularity in the form of control points grid and that's why it is more suitable for next processing. During conversion, which is described in this thesis, quadrilateral 3D mesh is constructed at first. This mesh has regular structure but mainly the structure corresponds to structure of control points grid of resulting 3D spline surface. Created quadrilateral 3D mesh can be saved and consequently used in specific modeling applications for T-spline surface creation.
|
720 |
Contribution à la manipulation dextre dynamique pour les aspects conceptuels et de commande en ligne optimale / Contribution to dynamic dexterous manipulation : design elements and optimal controlRojas Quintero, Juan Antonio 31 October 2013 (has links)
Nous nous intéressons à la conception des mains mécaniques anthropomorphes destinées à manipuler des objets dans un environnement humain. Via l'analyse du mouvement de sujets humains lors d'une tâche de manipulation de référence, nous proposons une méthode pour évaluer la capacité des mains robotiques à manipuler les objets. Nous montrons comment les rapports de couplage angulaires entre les articulations et les limites articulaires, influent sur l'aptitude à manipuler dynamiquement des objets. Nous montrons également l'impact du poignet sur les tâches de manipulation rapides. Nous proposons une stratégie pour calculer les forces de manipulation en bout de doigts et dimensionner les moteurs d'un tel préhenseur. La méthode proposée est dépendante de la tâche visée et s'adapte à tout type de mouvement dès lors qu'il peut être capturé et analysé. Dans une deuxième partie, consacrée aux robots manipulateurs, nous élaborons des algorithmes de commande optimale. En considérant l'énergie cinétique du robot comme une métrique, le modèle dynamique est formulé sous forme tensorielle dans le cadre de la géométrie Riemannienne. La discrétisation temporelle est basée sur les Éléments Finis d'Hermite. Nous intégrons les équations de Lagrange du mouvement par une méthode de perturbation. Des exemples de simulation illustrent la superconvergence de la technique d'Hermite. Le critère de contrôle est choisi indépendant des paramètres de configuration. Les équations de la commande associées aux équations du mouvement se révèlent covariantes. La méthode de commande optimale proposée consiste à minimiser la fonction objective correspondant au critère invariant sélectionné. / We focus on the design of anthropomorphous mechanical hands destined to manipulate objects in a human environment. Via the motion analysis of a reference manipulation task performed by human subjects, we propose a method to evaluate a robotic hand manipulation capacities. We demonstrate how the angular coupling between the fingers joints and the angular limits affect the hands potential to manipulate objects. We also show the influence of the wrist motions on the manipulation task. We propose a strategy to calculate the fingertip manipulation forces and dimension the fingers motors. In a second part devoted to articulated robots, we elaborate optimal control algorithms. Regarding the kinetic energy of the robot as a metric, the dynamic model is formulated tensorially in the framework of Riemannian geometry. The time discretization is based on the Hermite Finite Elements.A time integration algorithm is designed by implementing a perturbation method of the Lagrange's motion equations. Simulation examples illustrate the superconvergence of the Hermite's technique. The control criterion is selected to be coordinate free. The control equations associated with the motion equations reveal to be covariant. The suggested control method consists in minimizing the objective function corresponding to the selected invariant criterion.
|
Page generated in 0.0535 seconds