731 |
Einfache Modelle für komplexe Biomembranen / Simple Models For Complex BiomembranesSchultze, Hergen 06 October 2003 (has links)
No description available.
|
732 |
Ein Beitrag zur Untersuchung des Verhaltens dünner Flüssigkeitsfilme nahe gekrümmten Substratoberflächen / A contribution to the investigation of thin liquid layer behaviour at curved solid edgesSommer, Oliver 05 November 2014 (has links) (PDF)
In der vorliegenden Arbeit wurde das Verhalten dünner Flüssigkeitsfilme an gekrümmten Substratoberflächen durch experimentelle Beschichtungsversuche basierend auf der non-invasiven laserinduzierten Fluoreszenzmesstechnik und durch numerische Filmsimulationen mit Hilfe des Volume-of-Fluid Mehrphasenmodells untersucht. Besonderes Interesse galt dabei dem Finden optimaler Einflussgrößenkombinationen zur Reduzierung des Fettkanten-Effekts. In der hierfür durchgeführten Parameterstudie wurden sowohl Applikationsparameter wie der Kantenrundungsradius und die Applikationsschichtdicke als auch Stoffparameter der untersuchten Flüssigkeit wie die Viskosität und die Oberflächenspannung variiert. Neben qualitativen Beschreibungen der entstandenen Fettkantengestalten sind als Resultate auch Größen zur Quantifizierung der Fettkanten festgelegt worden und systematisch dargestellt. Es konnte nachgewiesen werden, dass ungünstige und geeignete Parameterkonfigurationen existieren, welche prägnante bzw. kaum auffällige Fettkanten erzeugen, insbesondere im Experiment. Über die dabei eingreifenden Mechanismen der zugrundeliegenden Strömungen wurden konkrete Hypothesen aufgestellt, auch um die resultierenden Proportionalitäten der Fettkantengrößen bezüglich der Einflussgrößen zu plausibilisieren. Weiterhin konnte eine Aussage über die Signifikanz der untersuchten Einflussgrößen getroffen werden. Abschließend wurde eine geeignete dimensionslose Kenngröße generiert, um den Fettkanten-Effekt parameterübergreifend beschreiben zu können, wodurch mittels der Ähnlichkeitstheorie auch eine gewisse Abschätzung des Fettkanten-Effekts ermöglicht wird. / In this study the behaviour of a thin liquid layer at a curved solid edge was examined by experimental coating investigations based on the laser-induced fluorescence technique and by numerical film simulations based on the Volume-of-Fluid multiphase flow model, respectively. The main motivation was to find optimal combinations of influencing quantities to reduce the fat-edge effect. Therefore a study of these quantities was performed, in which application parameters like edge radii of curvature and application layer thicknesses as well as determining liquid properties like viscosity and surface tension have been varied. Results are described qualitatively at corresponding fat-edge shapes and quantified by suitable fat-edge parameters, which had to be identified and selected. It could be shown that adverse and appropriate influencing parameter combinations exist, which generate conspicuous and less distinctive fat-edges, respectively - especially in laboratory experiments. The experimental findings and proportionalities regarding fat-edge shapes and dimensions are found to be physically plausible. Furthermore an order of significance of the influencing quantities established. Eventually, a dimensionless quantity was derived by dimensional analysis, which describes the fat-edge effect. Thus, the fat-edge effect has also been described by the application of similarity theory and the corresponding dimenionless number, respectively.
|
733 |
Modelling cortical laminae with 7T magnetic resonance imagingWähnert, Miriam 28 January 2015 (has links) (PDF)
To fully understand how the brain works, it is necessary to relate the
brain’s function to its anatomy. Cortical anatomy is subject-specific. It is character-
ized by the thickness and number of intracortical layers, which differ from one cortical
area to the next. Each cortical area fulfills a certain function. With magnetic res-
onance imaging (MRI) it is possible to study structure and function in-vivo within
the same subject. The resolution of ultra-high field MRI at 7T allows to resolve
intracortical anatomy. This opens the possibility to relate cortical function of a sub-
ject to its corresponding individual structural area, which is one of the main goals of
neuroimaging.
To parcellate the cortex based on its intracortical structure in-vivo, firstly, im-
ages have to be quantitative and homogeneous so that they can be processed fully-
automatically. Moreover, the resolution has to be high enough to resolve intracortical
layers. Therefore, the in-vivo MR images acquired for this work are quantitative T1
maps at 0.5 mm isotropic resolution.
Secondly, computational tools are needed to analyze the cortex observer-independ-
ently. The most recent tools designed for this task are presented in this thesis. They
comprise the segmentation of the cortex, and the construction of a novel equi-volume
coordinate system of cortical depth. The equi-volume model is not restricted to in-
vivo data, but is used on ultra-high resolution post-mortem data from MRI as well.
It could also be used on 3D volumes reconstructed from 2D histological stains.
An equi-volume coordinate system yields firstly intracortical surfaces that follow
anatomical layers all along the cortex, even within areas that are severely folded
where previous models fail. MR intensities can be mapped onto these equi-volume
surfaces to identify the location and size of some structural areas. Surfaces com-
puted with previous coordinate systems are shown to cross into different anatomical
layers, and therefore also show artefactual patterns. Secondly, with the coordinate
system one can compute cortical traverses perpendicularly to the intracortical sur-
faces. Sampling intensities along equi-volume traverses results in cortical profiles that
reflect an anatomical layer pattern, which is specific to every structural area. It is
shown that profiles constructed with previous coordinate systems of cortical depth
disguise the anatomical layer pattern or even show a wrong pattern. In contrast to
equi-volume profiles these profiles from previous models are not suited to analyze the
cortex observer-independently, and hence can not be used for automatic delineations
of cortical areas.
Equi-volume profiles from four different structural areas are presented. These pro-
files show area-specific shapes that are to a certain degree preserved across subjects.
Finally, the profiles are used to classify primary areas observer-independently.
|
734 |
Μαθηματικές μέθοδοι βελτιστοποίησης προβλημάτων μεγάλης κλίμακας / Mathematical methods of optimization for large scale problemsΑποστολοπούλου, Μαριάννα 21 December 2012 (has links)
Στην παρούσα διατριβή μελετάμε το πρόβλημα της βελτιστοποίησης μη γραμμικών συναρτήσεων πολλών μεταβλητών, όπου η αντικειμενική συνάρτηση είναι συνεχώς διαφορίσιμη σε ένα ανοιχτό υποσύνολο του Rn. Αναπτύσσουμε μαθηματικές μεθόδους βελτιστοποίησης αποσκοπώντας στην επίλυση προβλημάτων μεγάλης κλίμακας, δηλαδή προβλημάτων των οποίων οι μεταβλητές είναι πολλές χιλιάδες, ακόμα και εκατομμύρια. Η βασική ιδέα των μεθόδων που αναπτύσσουμε έγκειται στη θεωρητική μελέτη των χαρακτηριστικών μεγεθών των Quasi-Newton ενημερώσεων ελάχιστης και μικρής μνήμης. Διατυπώνουμε θεωρήματα αναφορικά με το χαρακτηριστικό πολυώνυμο, τον αριθμό των διακριτών ιδιοτιμών και των αντίστοιχων ιδιοδιανυσμάτων. Εξάγουμε κλειστούς τύπους για τον υπολογισμό των ανωτέρω ποσοτήτων, αποφεύγοντας τόσο την αποθήκευση όσο και την παραγοντοποίηση πινάκων. Τα νέα θεωρητικά απoτελέσματα εφαρμόζονται αφενός μεν στην επίλυση μεγάλης κλίμακας υποπροβλημάτων περιοχής εμπιστοσύνης, χρησιμοποιώντας τη μέθοδο της σχεδόν ακριβούς λύσης, αφετέρου δε, στην καμπυλόγραμμη αναζήτηση, η οποία χρησιμοποιεί ένα ζεύγος κατευθύνσεων μείωσης, την Quasi-Newton κατεύθυνση και την κατεύθυνση αρνητικής καμπυλότητας. Η νέα μέθοδος μειώνει δραστικά τη χωρική πολυπλοκότητα των γνωστών αλγορίθμων του μη γραμμικού προγραμματισμού, διατηρώντας παράλληλα τις καλές ιδιότητες σύγκλισής τους. Ως αποτέλεσμα, οι προκύπτοντες νέοι αλγόριθμοι έχουν χωρική πολυπλοκότητα Θ(n). Τα αριθμητικά αποτελέσματα δείχνουν ότι οι νέοι αλγόριθμοι είναι αποδοτικοί, γρήγοροι και πολύ αποτελεσματικοί όταν χρησιμοποιούνται στην επίλυση προβλημάτων με πολλές μεταβλητές. / In this thesis we study the problem of minimizing nonlinear functions of several variables, where the objective function is continuously differentiable on an open subset of Rn. We develop mathematical optimization methods for solving large scale problems, i.e., problems whose variables are many thousands, even millions. The proposed method is based on the theoretical study of the properties of minimal and low memory Quasi-Newton updates. We establish theorems concerning the characteristic polynomial, the number of distinct eigenvalues and corresponding eigenvectors. We derive closed formulas for calculating these quantities, avoiding both the storage and factorization of matrices. The new theoretical results are applied in the large scale trust region subproblem for calculating nearly exact solutions as well as in a curvilinear search that uses a Quasi-Newton and a negative curvature direction. The new method is drastically reducing the spatial complexity of known algorithms of nonlinear programming. As a result, the new algorithms have spatial complexity Θ(n), while they are maintaining good convergence properties. The numerical results show that the proposed algorithms are efficient, fast and very effective when used in solving large scale problems.
|
735 |
K-stabilité et variétés kähleriennes avec classe transcendante / K-stability and Kähler manifolds with transcendental cohomology classSjöström Dyrefelt, Zakarias 15 September 2017 (has links)
Dans cette thèse nous étudions des questions de stabilité géométrique pour des variétés kähleriennes à courbure scalaire constante (cscK) avec classe de cohomologie transcendante. En tant que point de départ, nous introduisons des notions généralisées de K-stabilité, étendant une image classique introduite par G. Tian et S. Donaldson dans le cadre des variétés polarisées. Contrairement à la théorie classique, ce formalisme nous permet de traiter des questions de stabilité pour des variétés kähleriennes compactes non projectives ainsi que des variétés projectives munis de polarisations non rationnelles. Dans une première partie, nous étudions les rayons sous-géodésiques associés aux configurations tests dites cohomologiques, objets introduitent dans cette thèse. Nous établissons ainsi des formules fondamentales pour la pente asymptotique d'une famille de fonctionnelles d'énergie, le long de ces rayons géodésiques. Ceci est lié au couplage de Deligne en géométrie algébrique, et ce formalise permet en particulier de comprendre le comportement asymptotique d'un grand nombre de fonctionnelles d'énergie classiques en géométrie kählerienne, y compris la fonctionnelle d'Aubin-Mabuchi et la K-énergie. En particulier, ceci fournit une approche pluripotentielle naturelle pour étudier le comportement asymptotique des fonctionnelles d'énergie dans la théorie de K-stabilité. En s'appuyant sur cette première partie, nous démontrons ensuite un certain nombre de résultats de stabilité pour les variétés cscK. Tout d'abord, nous prouvons que les variétés cscK sont K-semistables dans notre sens généralisé, prolongeant ainsi un résultat dû à Donaldson dans le cadre projectif. En supposant que le groupe d'automorphisme est discret, nous montrons en outre que la K-stabilité est une condition nécessaire pour l'existence des métriques cscK sur des variétés kähleriennes compactes. Plus précisément, nous prouvons que la coercivité de la K-énergie implique la K-stabilité uniforme, ainsi généralisant des résultats de Mabuchi, Stoppa, Berman, Dervan et Boucksom-Hisamoto-Jonsson pour des variétés polarisées. Cela donne une preuve nouvelle et plus générale d'une direction de la conjecture Yau-Tian-Donaldson dans ce contexte. L'autre direction (suffisance de K-stabilité) est considérée comme l'un des problèmes ouverts les plus importants en géométrie kählerienne. Nous donnons enfin des résultats partiels dans le cas des variétés kähleriennes compactes qui admettent des champs de vecteurs holomorphes non triviaux. Nous discutons également autour des perspectives et applications de notre théorie de K-stabilité pour les variétés kähleriennes avec classe transcendante, notamment à l'étude des lieux de stabilité dans le cône de Kähler. / In this thesis we are interested in questions of geometric stability for constant scalar curvature Kähler (cscK) manifolds with transcendental cohomology class. As a starting point we develop generalized notions of K-stability, extending a classical picture for polarized manifolds due to G. Tian, S. Donaldson, and others, to the setting of arbitrary compact Kähler manifolds. We refer to these notions as cohomological K-stability. By contrast to the classical theory, this formalism allows us to treat stability questions for non-projective compact Kähler manifolds as well as projective manifolds endowed with non-rational polarizations. As a first main result and a fundamental tool in this thesis, we study subgeodesic rays associated to test configurations in our generalized sense, and establish formulas for the asymptotic slope of a certain family of energy functionals along these rays. This is related to the Deligne pairing construction in algebraic geometry, and covers many of the classical energy functionals in Kähler geometry (including Aubin's J-functional and the Mabuchi K-energy functional). In particular, this yields a natural potential-theoretic aproach to energy functional asymptotics in the theory of K-stability. Building on this foundation we establish a number of stability results for cscK manifolds: First, we show that cscK manifolds are K-semistable in our generalized sense, extending a result due to S. Donaldson in the projective setting. Assuming that the automorphism group is discrete we further show that K-stability is a necessary condition for existence of constant scalar curvature Kähler metrics on compact Kähler manifolds. More precisely, we prove that coercivity of the Mabuchi functional implies uniform K-stability, generalizing results of T. Mabuchi, J. Stoppa, R. Berman, R. Dervan as well as S. Boucksom, T. Hisamoto and M. Jonsson for polarized manifolds. This gives a new and more general proof of one direction of the Yau-Tian-Donaldson conjecture in this setting. The other direction (sufficiency of K-stability) is considered to be one of the most important open problems in Kähler geometry. We finally give some partial results in the case of compact Kähler manifolds admitting non-trivial holomorphic vector fields, discuss some further perspectives and applications of the theory of K-stability for compact Kähler manifolds with transcendental cohomology class, and ask some questions related to stability loci in the Kähler cone.
|
736 |
Confinamento clássico e quântico de partículas induzido pela geometriaFormiga, Jansen Brasileiro 08 August 2011 (has links)
Made available in DSpace on 2015-05-14T12:14:00Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 1354058 bytes, checksum: 2f549ef4aed5937520237cd0b6df944f (MD5)
Previous issue date: 2011-08-08 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Since many models in physics depend on the confinement of particles in certain regions of the space-time, like Rubakov and Randall-Sundrum models, we analyze the possibility of using geometrical fields to confine particles. In doing so, we exhibit some examples of the confinement of particles by using only geometrical fields such as torsion and Weyl 1- form. In order to prepare the reader to these examples, we give a brief introduction to the Riemannian and the non-Riemannian geometries. It turned out to be impossible to avoid controversial issues such as the equation of motion of a particle, the use of the minimal coupling procedure, and the application of the variational principle for non-Riemannian geometries. However, we avoided choosing what approach was right and decided to take two completely different approaches into account, namely, Kleinert's and Hehl's ones. Kleinert claims that particles must follow autoparallel, while Hehl and others state that the equation of motion of a particle must be derived from a conservation law related to the energy-momentum tensor of the particle. As a matter of fact, there are more differences between those approaches than we have mentioned here, but we expect this thesis to clarify those differences. To be more precise, we managed to exhibit examples of confinement only for Kleinert's approach. We had dificulty finding a example of confinement to hehl's approach, however we were able to eliminate the possibility of confinement for many cases, like scale fields for example. / Levando em consideração o interesse visível que muitos modelos da física têm em manter
a matéria usual confinada em uma certa região do espaço-tempo, como por exemplo
o modelo de Rubakov e o de Randall-Sundrum, exibimos a possibilidade da utilização de
campos com origem geométrica para realizar este confinamento. Antes, porém, preparamos
o leitor com todo o aparato geométrico necessário para a compreensão do que é
feito nos últimos capítulos desta tese. Tornou-se impossível fugir de questões polêmicas
envolvendo geometrias mais gerais que a riemanniana, como por exemplo a polêmica sobre
a equação de movimento da partícula, o uso do acoplamento mínimo e a aplicação
do princípio variacional. Entretanto, tentamos adotar uma postura imparcial e fizemos a
análise do confinamento seguindo duas vertentes distintas. Uma das vertentes, defendidas
por Kleinert, consiste em postular que partículas seguem autoparalelas. A outra vertente,
a mais comum na literatura, segue a linha de Hehl, Gasperini e outros. Nesta vertente,
a equação de movimento de uma partícula não pode ser postulada, mas sim obtida a
partir da lei de conservação associada ao tensor de energia-momento da partícula, pois
este contém informação sobre o movimento da partícula. Há mais diferenças entre essas
duas linhas do que citamos aqui, como será indicado no decorrer da tese. Para ser mais
preciso, fomos capazes de exibir o confinamento apenas para a primeira vertente. No caso
da segunda, dificuldades técnicas nos limitaram a somente descartar certos campos de
origem geométrica como campos confinadores.
|
737 |
Géométrie et dynamique des structures Hermite-Lorentz / Geometry and Dynamics of Hermite-Lorentz structuresBen Ahmed, Ali 06 July 2013 (has links)
Dans la veine du programme d'Erlangen de Klein, travaux d'E. Cartan, M. Gromov, et d'autres, ce travail se trouve à cheval, entre la géométrie et les actions de groupes. Le thème global serait de comprendre les groupes d'isométries des variétés pseudo-riemanniennes. Plus précisément, suivant une "conjecture vague" de Gromov, classifier les variétés pseudo-riemanniennes dont le groupe d'isométries agit non-proprement, i.e. que son action ne préserve pas de métrique riemannienne auxiliaire?Plusieurs travaux ont été accomplis dans le cas des métriques lorentziennes (i.e. de signature (- +...+)). En revanche, le cas pseudo-riemannien général semble hors de portée.Les structures Hermite-Lorentz se trouvent entre le cas lorentzien et le premier cas pseudo-riemannien général, i.e. de signature (- - +…+). De plus, elle se définit sur des variétés complexes, et promet une extra-rigidité. Plus précisément, une structure Hermite-Lorentz sur une variété complexe consiste en une métrique pseudo-riemannienne de signature (- - +…+) qui est hermitienne au sens qu'elle est invariante par la structure presque complexe. Par analogie au cas hermitien classique, on définit naturellement une notion de métrique Kähler-Lorentz.Comme exemple, on a l'espace de Minkowski complexe ; dans un certain sens, on a un temps de dimension 1 complexe (du point de vue réel, le temps est 2-dimensionnel). On a également l'espace de Sitter et anti de Sitter complexes. Ils ont une courbure holomorphe constante, et généralisent dans ce sens les espaces projectifs et hyperboliques complexes.Cette thèse porte sur les variétés Hermite-Lorentz homogènes. En plus des exemples cités, il y a deux autres espaces symétriques, qui peuvent naturellement jouer le rôle de complexification des espaces de Sitter et anti de Sitter réels.Le résultat principal de la thèse est un théorème de rigidité de ces espaces symétriques : tout espace Hermite-Lorentz homogène à isotropie irréductible est l'un des cinq espaces symétriques précédents. D'autres résultats concernent le cas où l'on remplace l'hypothèse d'irréductibilité par le fait que le groupe d'isométries soit semi-simple. / In the vein of Klein's Erlangen program, the research works of E. Cartan, M.Gromov and others, this work straddles between geometry and group actions. The overall theme is to understand the isometry groups of pseudo-Riemannian manifolds. Precisely, following a "vague conjecture" of Gromov, our aim is to classify Pseudo-Riemannian manifolds whose isometry group act’s not properly, i.e that it’s action does not preserve any auxiliary Riemannian metric. Several studies have been made in the case of the Lorentzian metrics (i.e of signature (- + .. +)). However, general pseudo-Riemannian case seems out of reach. The Hermite-Lorentz structures are between the Lorentzian case and the former general pseudo-Riemannian, i.e of signature (- -+ ... +). In addition, it’s defined on complex manifolds, and promises an extra-rigidity. More specifically, a Hermite-Lorentz structure on a complex manifold is a pseudo-Riemannian metric of signature (- -+ ... +), which is Hermitian in the sense that it’s invariant under the almost complex structure. By analogy with the classical Hermitian case, we naturally define a notion of Kähler-Lorentz metric. We cite as example the complex Minkowski space in where, in a sense, we have a one-dimensional complex time (the real point of view, the time is two-dimensional). We cite also the de Sitter and Anti de Sitter complex spaces. They have a constant holomorphic curvature, and generalize in this direction the projective and complex hyperbolic spaces.This thesis focuses on the Hermite-Lorentz homogeneous spaces. In addition with given examples, two other symmetric spaces can naturally play the role of complexification of the de Sitter and anti de Sitter real spaces.The main result of the thesis is a rigidity theorem of these symmetric spaces: any space Hermite-Lorentz isotropy irreducible homogeneous is one of the five previous symmetric spaces. Other results concern the case where we replace the irreducible hypothesis by the fact that the isometry group is semisimple.
|
738 |
Superfícies mínimas com curvatura constante nas formas espaciais 4-dimensionais / Minimal surfaces with constant curvature in 4-dimensional space formsHIEDA, Lidiane Mayumi 13 May 2011 (has links)
Made available in DSpace on 2014-07-29T16:02:18Z (GMT). No. of bitstreams: 1
Dissertacao Lidiane Mayumi Hieda.pdf: 465165 bytes, checksum: a5ce3ff47770899f6a4edcca3e40ed69 (MD5)
Previous issue date: 2011-05-13 / This work was based on papers On Compact Minimal Surfaces with non-negative Gaussian Curvature in a Space of Constant Curvature: I and Minimal Surfaces
with Constant Curvature in 4-dimensional Space Forms, by Katsuei Kenmotsu, consisting in the classification of minimal surfaces with constant Gaussian curvature K
in a 4-dimensional space form without any global assumption. We will show that an isometric minimal immersion x: M2(K) → M4(c), where c is sectional curvature, is either totally geodesic, or locally Clifford Torus, or locally a Veronese surface. As a corollary, we have that there is not isometric minimal immersions with constant negative Gaussian curvature into unit sphere S4(1) even locally. / Este trabalho foi baseado nos artigos On CompactMinimal Surfaces with non-negative
Gaussian Curvature in a Space of Constant Curvature: I e Minimal Surfaces with Constant Curvature in
4-dimensional Space Forms de Katsuei Kenmotsu que consistem em classificar superfícies mínimas com curvatura Gaussiana constante K nas formas espaciais
4-dimensionais, sem alguma hipótese global. Mostraremos que uma imersão isométrica mínima x : M2(K) → M4(c), onde c é a curvatura seccional, ou é totalmente geodésica, ou localmente um Toro de Clifford, ou localmente uma superfície de Veronese.
Como corolário, temos que não existe uma imersão isométrica mínima com curvatura Gaussiana constante negativa numa esfera unitária S4(1) mesmo que localmente.
|
739 |
Análise de estabilidade de contenções, via MEF, considerando a interação solo-estrutura. / Analysis of stability of retaining walls, via MEF, regarding the soil-structure interaction.Alessandro Lugli Nascimento 25 November 2011 (has links)
Este trabalho tem a finalidade de estudar a influência da parede de concreto na análise de estabilidade de contenções atirantadas bem como discutir sobre segurança nestas análises. Para isto foram elaborados modelos em estado plano de deformação por meio do método dos elementos finitos, MEF, para análise. A parede de concreto foi modelada com variações de rigidez e modelos reológico, com o fim de se entender sua influência no fator de segurança. Por fim foi realizado um breve estudo sobre a utilização dos métodos estatísticos na análise de estabilidade de contenções. / This work has the purpose of study the influence of the concrete wall in the stability analysis of tieback retaining walls and to discuss these safety analysis. Models were developed using plane strain state via the finite element method, FEM, for analysis. The concrete wall was modeled with variations of stiffness and rheological models, in order to bore its influence on the safety factor. Finally a brief study was conducted on the use of statistical methods in stability analysis of retaining walls.
|
740 |
Dispositivos em fibras ópticas baseados em interferência multimodal / Devices with optical fibres based on multimode interferencePinilla Pachon, Edwin German, 1981- 03 May 2013 (has links)
Orientadores: Cristiano Monteiro de Barros Cordeiro, Marcos Antonio Ruggieri Franco / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-22T12:56:38Z (GMT). No. of bitstreams: 1
PinillaPachon_EdwinGerman_M.pdf: 12541930 bytes, checksum: 74a0367c344ded9c8891d11280568b6b (MD5)
Previous issue date: 2013 / Resumo: Nesta dissertação se estudou por simulação numérica o efeito de interferência multimodal (MMI, do inglês "multimode interference") em guias de onda, com atenção especial a fibras ópticas, e a resposta óptica do dispositivo MMI a parâmetros externos como temperatura, curvatura e índice de refração. Dispositivos baseados em MMI são formados, em geral, por três guias de onda concatenados sendo as extremidades compostas de guias monomodo e a parte central composta de um guia que permite a propagação de muitos modos, tipicamente, mais do que três. Nesta situação, na seção multimodo, são formadas reimagens que aproximadamente replicam fase e amplitude do campo óptico de entrada. A observação do espectro de transmissão correspondente à primeira reimagem, em dispositivos MMI, permite desenvolver sensores de índice de refração, temperatura e curvatura. A sensibilidade dos sensores foi avaliada frente às variações do mensurando, ou seja, variações no índice de refração, temperatura e curvatura da estrutura MMI em fibra óptica. / Abstract: In this work the effect of multimodal interference (MMI) in waveguides was studied by numerical simulation. Special attention was given to optical fibers and its the optical response when external parameters such as temperature, curvature or refractive índex were varied. MMI devices are usually formed by connecting three waveguides being the input and output ones single mode waveguides while the middle one is a waveguide that allows the propagation of many optical modes, typically more than three. In this situation re-images that replicate both the phase and the amplitude of the input optical field are formed periodically within the multimode section. The analysis of the transmission spectrum of the first re-image in MMI devices were realized in order to get information about the fiber environment, in particular the surrounding refractive índex, radius of curvature and temperature. The sensors sensitivity was evaluated. / Mestrado / Física / Mestre em Física
|
Page generated in 0.0408 seconds