• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cytochrome P450 isoforms 1A1, 1B1 AND 2W1 as targets for therapeutic intervention in head and neck cancer

Presa, Daniela, Khurram, S.A., Zubir, A.Z.A., Swaroop, Sneha, Cooper, Patricia A., Morais, Goreti R., Sadiq, Maria, Sutherland, Mark, Loadman, Paul, McCaul, Jim, Shnyder, Steven, Patterson, Laurence H., Pors, Klaus 11 December 2023 (has links)
Yes / Epidemiological studies have shown that head and neck cancer (HNC) is a complex multistage process that in part involves exposure to a combination of carcinogens and the capacity of certain drug-metabolising enzymes including cytochrome P450 (CYP) to detoxify or activate such carcinogens. In this study, CYP1A1, CYP1B1 and CYP2W1 expression in HNC was correlated with potential as target for duocarmycin prodrug activation and selective therapy. In the HNC cell lines, elevated expression was shown at the gene level for CYP1A1 and CYP1B1 whereas CYP2W1 was hardly detected. However, CYP2W1 was expressed in FaDu and Detroit-562 xenografts and in a cohort of human HNC samples. Functional activity was measured in Fadu and Detroit-562 cells using P450-Glo™ assay. Antiproliferative results of duocarmycin prodrugs ICT2700 and ICT2706 revealed FaDu and Detroit-562 as the most sensitive HNC cell lines. Administration of ICT2700 in vivo using a single dose of ICT2700 (150 mg/kg) showed preferential inhibition of small tumour growth (mean size of 60 mm3) in mice bearing FaDu xenografts. Significantly, our findings suggest a potential targeted therapeutic approach to manage HNCs by exploiting intratumoural CYP expression for metabolic activation of duocarmycin-based prodrugs such as ICT2700. / The authors would like to thank Bradford Institute for Health Research for funding a PhD studentship to DP through a competitive scheme and Yorkshire Cancer Research programme Grant (B381PA) for supporting our cytochrome P450-focused drug discovery research.
2

Quantitative pharmacoproteomics investigation of anti-cancer drugs in mouse : development and optimisation of proteomics workflows for evaluating the effect of anti-cancer drugs on mouse liver

Abumansour, Hamza M. A. January 2016 (has links)
Minimizing anti-cancer drug toxicity is a major challenge for the pharmaceutical industry. Toxicity is most frequently due to either the direct interaction of the drug on previously unidentified targets or its conversion to metabolites by drug metabolizing enzymes (e.g. CYP450 enzymes) that cause cellular, tissue or organ damage. Pharmacoproteomics is beginning to take a central role in studying changes in protein expression corresponding to drug administration, the results of which, inform about the mode of action, toxicity, and resistance in pre-clinical and clinical stages of drug development. The main aim of this research is to apply comparative proteomics studies on livers from male and female mice xenograft models treated with major anti-cancer drugs (5-flourouracil, paclitaxel, cisplatin, and doxorubicin) and CYP inducer, TCPOBOP, to investigate their effect on protein expression profiles (proteome). Within this thesis, an attention is paid to optimise a highly validated proteomics workflow for biomarker identification. Proteins were extracted from liver microsomes of mice treated in two separate sets; Set A – male (5-fluoruracil, doxorubicin, cisplatin and untreated) or Set B – female (5-fluoruracil, paclitaxel, TCPOBOP and untreated) using cryo-pulverization and sonication method. The extracts were digested with trypsin ii and the resulting peptides labelled with 4-plex iTRAQ reagents. The labelled peptides were subjected for separation in two-dimensions by iso-electric focusing (IEF) and RP-HPLC techniques before analysis by mass spectrometry and database searching for protein identification. Set A and Set B resulted in identification and quantification of 1146 and 1743 proteins, respectively. Moreover, Set A and Set B recovered 26 and 34 cytochrome P450 isoforms, respectively. The microsomal changes after drug treatments were quite similar. However, more changes were observed in the male set. Up-regulation of MUPs showed the greatest distinction in the protein expression patterns in the treated samples comparing to the untreated controls. In Set A, 5-fluoruracil and cisplatin increased the expression of three isoforms (MUP1, 2, and 6), whereas doxorubicin has increased the expression of four isoforms (MUP1, 2, 3, and 6). On the other side, only TCPOBOP in Set B has increased the expression of two isoforms (MUP1 and 6). Our findings showed that the expression of MUP, normally involved in binding and excretion of pheromones, have drug- and sex-specific differences. The mechanism and significance of MUP up-regulation are ambiguous. Therefore, the impact of each therapeutic agent on MUP and xenobiotic enzymes will be discussed.
3

Quantitative pharmacoproteomics investigation of anti-cancer drugs in mouse. Development and optimisation of proteomics workflows for evaluating the effect of anti-cancer drugs on mouse liver

Abumansour, Hamza M.A. January 2016 (has links)
Minimizing anti-cancer drug toxicity is a major challenge for the pharmaceutical industry. Toxicity is most frequently due to either the direct interaction of the drug on previously unidentified targets or its conversion to metabolites by drug metabolizing enzymes (e.g. CYP450 enzymes) that cause cellular, tissue or organ damage. Pharmacoproteomics is beginning to take a central role in studying changes in protein expression corresponding to drug administration, the results of which, inform about the mode of action, toxicity, and resistance in pre-clinical and clinical stages of drug development. The main aim of this research is to apply comparative proteomics studies on livers from male and female mice xenograft models treated with major anti-cancer drugs (5-flourouracil, paclitaxel, cisplatin, and doxorubicin) and CYP inducer, TCPOBOP, to investigate their effect on protein expression profiles (proteome). Within this thesis, an attention is paid to optimise a highly validated proteomics workflow for biomarker identification. Proteins were extracted from liver microsomes of mice treated in two separate sets; Set A – male (5-fluoruracil, doxorubicin, cisplatin and untreated) or Set B – female (5-fluoruracil, paclitaxel, TCPOBOP and untreated) using cryo-pulverization and sonication method. The extracts were digested with trypsin ii and the resulting peptides labelled with 4-plex iTRAQ reagents. The labelled peptides were subjected for separation in two-dimensions by iso-electric focusing (IEF) and RP-HPLC techniques before analysis by mass spectrometry and database searching for protein identification. Set A and Set B resulted in identification and quantification of 1146 and 1743 proteins, respectively. Moreover, Set A and Set B recovered 26 and 34 cytochrome P450 isoforms, respectively. The microsomal changes after drug treatments were quite similar. However, more changes were observed in the male set. Up-regulation of MUPs showed the greatest distinction in the protein expression patterns in the treated samples comparing to the untreated controls. In Set A, 5-fluoruracil and cisplatin increased the expression of three isoforms (MUP1, 2, and 6), whereas doxorubicin has increased the expression of four isoforms (MUP1, 2, 3, and 6). On the other side, only TCPOBOP in Set B has increased the expression of two isoforms (MUP1 and 6). Our findings showed that the expression of MUP, normally involved in binding and excretion of pheromones, have drug- and sex-specific differences. The mechanism and significance of MUP up-regulation are ambiguous. Therefore, the impact of each therapeutic agent on MUP and xenobiotic enzymes will be discussed.
4

Investigation of cytochrome p450 isoforms 1A1, 1B1 and 2W1 as targets for therapeutic intervention in head and neck cancer. Probing CYP1A1, 1B1 and 2W1 activity with duocarmycin bioprecursors

Presa, Daniela January 2018 (has links)
The full text will be available at the end of the embargo: 30th July 2026

Page generated in 0.0725 seconds