Spelling suggestions: "subject:"cytolytic"" "subject:"autolysis""
1 |
Granzyme B-td TOMATO, un nouvel outil fluorescent pour le suivi de la cytolyse chez la sourisMouchacca, Pierre 16 March 2012 (has links)
La fonction de cytolyse est un mécanisme majeur des effecteurs du système immunitaire pour éliminer les cellules infectées ou tumorales. Cette fonction associe l'activité de la perforine, qui forme des pores dans la membrane d'une cellule cible, à la sécrétion de protéases: les granzymes. Ces dernières sont des molécules pro-apoptotiques qui induisent la mort de la cellule cible. Les granzymes et en particulier granzyme B ciblent plusieurs voies intracellulaires complémentaires pour assurer l'efficacité de la cytolyse. Or il est difficile d'observer directement la fonction de cytolyse au cours de réponse immunitaire in vivo dans des conditions physiologiques. Dans les travaux présentés dans cette thèse, nous avons développé un nouveau modèle qui permet de suivre la fonction de cytolyse en temps réel par l'expression d'une protéine de fusion fluorescente GZMB-tdTomato. Les résultats obtenus par expression rétrovirale ont montré que la protéine de fusion est correctement exprimée dans les vésicules cytolytiques qui deviennent fluorescentes. Dans un second temps, nous avons réalisé un nouveau modèle murin qui exprime GZMB-tdTomato de manière substituée au GZMB natif par recombinaison homologue (Knock In). Nous avons mis en évidence que la protéine de fusion conserve l'activité catalytique de la protéine native et ses caractéristiques (conditions d'expression, de maturation, de sécrétion et demeure active après le passage dans la cellule cible lors de la cytolyse). En utilisant un modèle murin exprimant un TCR transgénique nous avons pu suivre le déroulement de la fonction de cytolyse de lymphocytes cytotoxiques en temps réel par video microscopies. / Cytolysis is a major function used by the immune system's effectors to kill infected or tumor cells. Cytolysis depends on the pore forming protein perforin and the secretion of proteases of the granzyme family. Granzymes, including granzyme B (GZMB) have pro-apoptotic features and induce target cell death. Several complementary pathways are triggered by granzymes to ensure efficient cytolysis. It remains difficult to directly observe cytolysis during in vivo immune responses under physiological conditions. In this PhD we developed a new model to visualize cytolytic function in real time by expression of a fusion protein: GZMB-tdTomato. Results obtained from retroviral transduction showed that the fusion protein is correctly expressed in cytolytic vesicles, which became fluorescent. We then constructed a new mouse model by homologous recombination (Knock In) that express GZMB-tdTomato substituted for the native GZMB. The fusion protein conserves the catalytic activity of GZMB and its features (expression, maturation, secretion conditions) and remains active after its passage into target cells. Using TCR transgenic OTI cells, we followed the sequence of events of cytolysis from lymphocytes in real time by videomicroscopy. We also observed the cytolytic vesicles relocalization towards the cell contact zone and the death of target cell by cytolysis. Finally, we studied in vivo differentiation of naïve lymphocyte to cytolytic effector cells (the acquisition of cytolysis) and target cell death after bacterial infection.
|
Page generated in 0.058 seconds