1 |
Élaboration d'une version préliminaire d'un inventaire cognitif de l'humeur dépressive auprès des personnes séropositives au VIHJolicoeur, Nathalie 15 December 2021 (has links)
No description available.
|
2 |
Contribution to the study of major depressive illness using non-invasive sleep complexity measuresLeistedt, Samuel 14 May 2010 (has links)
Major Depressive Disorder (MDD) is exceedingly prevalent and considered to be one of the leading cause of disability worldwide. Depression is also a heterogeneous disorder characterized by complex diagnotic approaches with a lack of diagnostic biomarker, an inconsistent response to treatment, no established mechanism, and affecting multiple physiological systems such as endocrine, immunological and cardiovasular as well. <p><p>The growing impact of the analysis of complex signals on biology and medicine is fundamentally changing our view of living organisms, physiological systems, and disease processes. In this endeavour, the basic challenge is to reveal how the coordinated, dynamical behavior of cells and tissues at the macroscopic level, emerges from the vast number of random molecular interactions at the microscopic level. In this way, the fundamental questions could be: (i) how physiological systems function as a whole, (ii) how they transduce and process dynamical information, (iii) how they respond to external stimuli, and mostly (iv), how they change during a pathological processus.<p><p>These challenges are of interest from a number of perspectives including basic modeling of physiology and practical bedside approaches to medical and risk stratification. <p><p>The general purpose of this thesis, therefore, is to study physiological time series to provide a new understanding of sleep dynamics in health, specifically as they apply to the pathological condition of MDD. More precisely: (1) to quantitatively characterize the complex, nonlinear behaviour of cardiovascular (ECG) and electroencephalographic (EEG) time series during sleep, in health and in MDD. This project will test the hypotheses that both the sleep EEG and ECG detects reorganization in the system dynamics in patient suffering from depression. (2) To develop new diagnostic and prognostic tests for MDD, by detecting and extracting “hidden information” in the ECG and EEG datasets.<p><p>Three different methods are introduced in this thesis for the analysis of dynamical systems. The first one, detrended fluctuation analysis, can reveal the presence of long-term correlations ("memory" in the physiological system) even when embedded in non-stationary time series. Graph theoretical measures were then applied to test whether disrupting an optimal pattern ["small-world network"] of functional brain connectivity underlies depression. Finally, multiscale entropy method, which is aimed at quantifying the complexity of the systems' output resulting from the presence of irregular structures on multiple scales, was applied on the ECG signal.<p><p>The results indicate that healthy physiologic systems, measured through the EEG and the ECG signals, are the most complex. According to the decomplexification theory, the depressive disease model exhibits a loss of system complexity, with potential important applications in the development and testing of basic physiologic models, of new diagnostic and prognostic tools in psychiatry, and of clinical risk stratification. / Doctorat en Sciences médicales / info:eu-repo/semantics/nonPublished
|
3 |
Performance diagnostique de l'inventaire de dépression de Beck et de l'échelle de dépression gériatrique auprès de personnes agées vivant à domicile et en institutionLaprise, Réjeanne 23 February 2022 (has links)
Ce mémoire constitue la poursuite des travaux de validation de Vézina et Bourque de deux échelles d'auto-évaluation de la dépression, soient l'Inventaire de Dépression de Beck et l'Échelle de Dépression Gériatrique et ce, auprès de personnes âgées francophones. Trois volets d'analyse psychométrique ont composé ce projet de recherche dont l'objectif général était d'estimer les performances diagnostiques de ces deux échelles lorsque confrontées à un critère diagnostic de dépression majeure établi selon les critères du Diagnostic and Statistical Disorders(DSM-III-R). Le premier volet avait comme objectif principal de comparer et de déterminer lequel de ces deux instruments offrait la meilleure performance diagnostique auprès d'une population âgée francophone vivant à domicile. Il poursuivait comme autre objectif d'évaluer des indices de stabilité temporelle, de validité concomitante et discriminante ainsi que les taux de sensibilité et de spécificité pour l'ensemble des seuils d'utilisation. Le deuxième volet cherchait à mesurer lequel de ces deux instruments présentait la meilleure performance diagnostique mais cette fois-ci, auprès d'une population âgée francophone vivant en hébergement. Des taux de sensibilité et de spécificité pour tous les seuils d'utilisation, des indices de stabilité temporelle ainsi que de validité concomitante ont également été recueillis auprès de cette deuxième population. Le troisième volet adoptait une perspective d'étude différente en évaluant l'influence du milieu de vie d'hébergement et domiciliaire sur les performances diagnostiques respectives de ces deux échelles. Finalement, l'un des attraits majeur de ces analyses résidait dans l'apport novateur des courbes caractéristiques(Receiver Operating Characteristics (ROC) Curves) au domaine de la psychométrie.
|
Page generated in 0.0706 seconds