Spelling suggestions: "subject:"détection dde model"" "subject:"détection dee model""
1 |
Observation et détection de modes pour la synchronisation des systèmes chaotiques : une approche unifiéeHalimi, Meriem 17 December 2013 (has links) (PDF)
Le travail développé dans ce manuscrit porte sur la synchronisation des systèmes chaotiques. Il est articulé autour de deux axes principaux : la synthèse d'observateur et la détection de modes. Dans un premier temps, quelques rappels sur le chaos et les principales architectures de systèmes de chi ffrement chaotiques sont e ffectués. Ensuite, nous montrons comment les systèmes chaotiques à non linéarité polynomiale ou affi nes à commutation peuvent se réécrire sous forme LPV polytopique. Une revue des principaux résultats sur la synthèse d'observateurs LPV polytopiques reposant sur l'utilisation des LMI est faite. Une extension des résultats aux observateurs polytopiques à entrées inconnues, à la fois dans le cas déterministe, bruité ou incertain est proposée. Ces observateurs assurent la synchronisation du chaos et donc le déchiff rement dans les systèmes de chiff rement "modulation paramétrique", "commutation chaotique", "transmission à deux canaux" et "chiff rement par inclusion". Pour les systèmes a ffines à commutation utilisés en tant que générateur du chaos, le cas où l'état discret n'est pas accessible est considéré. Une présentation unifi ée des méthodes fondées sur les espaces de parité, proposées dans la littérature pour les systèmes linéaires et affi nes à commutation à temps discret, est réalisée. Le problème de discernabilité fait l'objet d'une étude approfondie. Une approche pour estimer les retards variables des systèmes a ffines et affi nes à commutation à temps discret, formulée en termes de détection de modes, est proposée en tant que solution à l'estimation de retard pour le chiff rement par injection de retard.
|
2 |
Résolution de grands systèmes linéaires issus de la méthode des éléments finis sur des calculateurs massivement parallèlesGueye, Ibrahima 15 December 2009 (has links) (PDF)
Cette étude consiste à résoudre de grands systèmes linéaires creux sur des calculateurs massivement parallèles. Ces systèmes linéaires, souvent rencontrés lors de la simulation numérique de problèmes de mécanique des structures par des codes de calcul par éléments finis, sont résolus avec des coûts très importants en temps de calcul et en espace mémoire. Dans cette thèse, nous mettons au point un parallélisme à deux niveaux et l'intégrons dans les méthodes de décomposition de domaine de type FETI. La démarche s'est organisée autour de trois chapitres principaux. Dans un premier temps, nous mettons en œuvre un solveur direct pour inverser des systèmes linéaires creux qui peuvent être symétriques ou non symétriques, réels ou complexes, à second membre simple ou multiple. La mise en œuvre, basée sur une technique de renumérotation de type dissection emboîtée, est complétée par un point utile dans beaucoup de méthodes de décomposition de domaine (construction d'un préconditionneur ou formulation de l'opérateur de FETI) : la détection de modes à énergie nulle des systèmes singuliers. Dans un deuxième temps, nous parallélisons le solveur direct à travers un modèle de parallélisme à mémoire partagée (multi-threading) pour tirer profit des nouveaux processeurs multi-coeurs. Dans un troisième temps, nous intégrons cette version multi-threads du solveur dans les méthodes FETI pour inverser les problèmes locaux en parallèle. Les résultats de cette étude mettent en évidence l'utilité des travaux effectués et l'intérêt d'utiliser comme solveur local dans les méthodes FETI un solveur direct parallèle robuste et efficace. Tout ceci peut donner accès à de nouvelles gammes de problèmes en calcul des structures. Il serait intéressant de revoir le parallélisme à gros grains entre sous-domaines dans les méthodes FETI. Cela pourrait consister à utiliser la version du solveur direct à second membre multiple pour améliorer plus la méthode itérative utilisée dans la résolution du problème d'interface.
|
Page generated in 0.1457 seconds