31 |
Embedded Intelligence In Structural Health Monitoring Using Artificial Neural NetworksKesavan, Ajay, not supplied January 2007 (has links)
The use of composite structures in engineering applications has proliferated over the past few decades due to its distinct advantages namely: high structural performance, corrosion resistance, and high strength/weight ratio. However, they also come with a set of disadvantages, i.e. they are prone to fibre breakage, matrix cracking and delaminations. These types of damage are often invisible and if undetected, could lead to catastrophic failures of structures. Although there are systems to detect such damage, the criticality assessment and prognosis of the damage is often much more difficult to achieve. The research study conducted here resulted in the development of a Structural Health Monitoring (SHM) system for a 2D polymeric composite T-joint, used in maritime structures. The SHM system was found to be capable of not only detecting the presence of multiple delaminations in a composite structure, but also capable of determining the location and extent of all t he delaminations present in the T-joint structure, regardless of the load (angle and magnitude) acting on the structure. The system developed relies on the examination of the strain distribution of the structure under operational loading. This SHM system necessitated the development of a novel pre-processing algorithm - Damage Relativity Assessment Technique (DRAT) along with a pattern recognition tool, Artificial Neural Network (ANN), to predict and estimate the damage. Another program developed - the Global Neural network Algorithm for Sequential Processing of Internal sub Networks (GNAISPIN) uses multiple ANNs to render the SHM system independent to variations in structural loading and capable of estimating multiple delaminations in composite T-joint structures. Upto 82% improvement in detection accuracy was observed when GNAISPIN was invoked. The Finite Element Analysis (FEA) was also conducted by placing delaminations of different sizes at various locations in two structures, a composite beam and a T-joint. Glass Fibre Reinforced Polymer T-joints were then manufactured and tested, thereby verifying the accuracy of the FEA results experimentally. The resulting strain distribution from the FEA was pre-processed by the DRAT and used to trai n the ANN to predict and estimate damage in the structures. Finally, on testing the SHM system developed with strain signatures of composite T-joint structures, subjected to variable loading, embedded with all possible damage configurations (including multiple damage scenarios), an overall damage (location & extent) prediction accuracy of 94.1% was achieved. These results are presented and discussed in detail in this study.
|
32 |
The Effect of Skin and Soft Tissue on Spinal Frequency Response MeasurementsDecker, Colleen 11 1900 (has links)
Introduction: This study sought to investigate the effects of soft tissue on
measurements of a spinal vibration response using skin-mounted
accelerometers and a non-invasive contact tip.
Methods: Vibration was applied to the spine of porcine and human cadavers.
Measurements of the spinal vibration response were taken from needle, skin,
and bone-mounted accelerometers. Several skin-mounted accelerometer
placements dorsal to a spinous process were tested, and 6 different non-invasive
contact tip shapes were used to explore sources of variance in the signals.
Results: Vibration measured from skin-mounted accelerometers had altered
signal patterns compared to bone-mounted accelerometers. The measured FRF
was found to be sensitive to accelerometer positioning. No significant difference
in skin-bone correlation was attributed to contact tip shape or vertebral level.
Conclusion: The use of a non-invasive contact tip excites vibration in the soft
tissues which overlay the spine, in addition to the vertebral column. This
vibration interferes with skin sensor measurements of vertebral vibration
response, with the effect diminishing as distance from the contact tip increases.
Small changes in contact tip shape do not affect the correlation between skin
and bone signals.
|
33 |
Damage Detection and Fault Diagnosis in Mechanical Systems using Vibration SignalsNguyen, Viet Ha 29 October 2010 (has links)
Cette thèse a pour but didentifier de changements dans le comportement dynamique dun système mécanique par le développement des techniques didentification, de détection et de recalage de modèle. Un endommagement ou une activation de non - linéarité est considéré responsable du changement.
Une bien connue classification pour la détection dendommagement dans la littérature est utilisée dans la thèse, qui définit quatre niveaux dans lordre croissant de complexité:
- Niveau 1 : Détection dendommagement : inspection de la présence dendommagement dans la structure.
- Niveau 2 : Localisation dendommagement : détermination de position de lendommagement.
- Niveau 3 : Evaluation de la gravité de lendommagement.
- Niveau 4 : Prévision de la durée restant de vie de la structure.
Selon la classification décrite ci-dessus, le problème de diagnostic dans cette thèse est abordé pour les trois premiers niveaux, i.e. détection, localisation et évaluation. Lidentification dendommagements ou dactivation de non - linéarité est basée sur une comparaison entre un état actuel et létat de référence (en normal condition).
La thèse est organisée comme suit :
Chapitre 1 présente une étude bibliographique sur des méthodes dindentification modale et de détection. Cette partie décrit quelques caractéristiques principales de systèmes non - linéaires et également des défis que présente la non - linéarité. Les problèmes de localisation et dévaluation sont discutés ensuite.
Chapitres 2, 3 et 4 se concentrent sur la détection de défaut, par exemple lactivation de non linéarité ou lapparition dendommagement par trois méthodes respectivement : la Transformée en ondelettes (Wavelet transform), la Séparation aveugle au second ordre (Second-Order Blind Identification) et lAnalyse en composantes principales à noyau (Kernel Principal component Analysis). Seuls des signaux de sortie sont utilisés pour le traitement. Les deux premières méthodes réalisent la surveillance structurale par un processus didentification modale, tandis que la dernière méthode exerce directement dans des espaces caractéristiques déterminés par une fonction de noyau choisie. La détection peut être réalisée au moyen du concept dangle entre sous-espaces ou basée sur des statistiques.
La robustesse des méthodes est illustrée sur une structure de poutre avec une non -linéarité géométrique à un bout ; ce modèle a été étudié dans le cadre dun projet de recherche européenne COST F3. Des autres exemples sont également considérés, tels quune maquette davion avec différents niveaux dendommagement et deux applications industrielles avec le but de contrôle de qualité sur un set dappareils électro - mécaniques et sur des joints de soudure.
Chapitre 5 vise à la localisation dendommagement basée sur lanalyse de sensibilité des résultats de lAnalyse en composantes principales dans le domaine fréquentiel. La localisation est exécutée par la comparaison des sensibilités de composantes principales entre létat de référence (saine) et un état endommagé. Seules les réponses mesurées, e.g. réponses en fréquence (FRFs) sont nécessaires pour cet objectif.
Après lanalyse de sensibilité au Chapitre 5, Chapitre 6 sadresse à lévaluation de paramètres, par exemple estimation dendommagements. Pour ce but, une procédure de recalage de modèle est exécutée. Cette procédure demande de construire un modèle analytique de la structure.
Lanalyse de sensibilité pour la localisation dendommagement est illustrée par des données numériques et expérimentales dans des systèmes de masse - ressort et dans des structures de poutre. Une réelle structure, i.e. le pont I-40 à New Mexico qui a été détruite en 1993 est aussi examinée.
Enfin, des conclusions sont retirées basées sur le travail réalisé et quelques perspectives sont proposées pour la continuation de cette recherche.
|
34 |
Structural health monitoring of Attridge Drive overpassSiddique, Abu Bakkar 05 September 2008
Vibration-based damage detection (VBDD) comprises a family of non-destructive testing methods in which changes to dynamic characteristics are used to track the condition of a structure. Although VBDD methods have been successfully applied to various mechanical systems and to simple beam-like structures, significant challenges remain in extending this technology to complex, spatially distributed structures such as bridges. <p> In the present study, numerical simulations using a calibrated finite element model were used to investigate the use of VBDD methods to detect small-scale damage on a two-span, integral abutment overpass structure located in Saskatoon, Saskatchewan. The small scale damage was defined in this study as the removal of a concrete element from the top surface of the bridge deck, resembling the spalled clear cover of concrete deck of the overpass. Five different VBDD techniques were evaluated, including the Change in Mode Shape, Change in Flexibility, Change in Mode Shape Curvature, Change in Uniform Flexibility Curvature and Damage index methods. In addition, the influence of the size of damage, the orientation of damage geometry, sensor spacing (3 m, 5 m and 7.5 m), the approach used for mode shape normalization, and uncertainty in the measured mode shapes was investigated. <p> It was found that localized damage could be reliably detected and located if the sensors were located within 3 m of the damage (the distance between adjacent girders) and if uncertainty in the mode shapes was attenuated through the use of a sufficient number of repeated trials. Furthermore, studies using a limited sensor installation that could be achieved without interrupting the flow of traffic indicated that small scale damage could be detected and potentially located using sensors that are placed well away from the damaged area, provided uncertainty in mode shape was attenuated.
|
35 |
Structural health monitoring of Attridge Drive overpassSiddique, Abu Bakkar 05 September 2008 (has links)
Vibration-based damage detection (VBDD) comprises a family of non-destructive testing methods in which changes to dynamic characteristics are used to track the condition of a structure. Although VBDD methods have been successfully applied to various mechanical systems and to simple beam-like structures, significant challenges remain in extending this technology to complex, spatially distributed structures such as bridges. <p> In the present study, numerical simulations using a calibrated finite element model were used to investigate the use of VBDD methods to detect small-scale damage on a two-span, integral abutment overpass structure located in Saskatoon, Saskatchewan. The small scale damage was defined in this study as the removal of a concrete element from the top surface of the bridge deck, resembling the spalled clear cover of concrete deck of the overpass. Five different VBDD techniques were evaluated, including the Change in Mode Shape, Change in Flexibility, Change in Mode Shape Curvature, Change in Uniform Flexibility Curvature and Damage index methods. In addition, the influence of the size of damage, the orientation of damage geometry, sensor spacing (3 m, 5 m and 7.5 m), the approach used for mode shape normalization, and uncertainty in the measured mode shapes was investigated. <p> It was found that localized damage could be reliably detected and located if the sensors were located within 3 m of the damage (the distance between adjacent girders) and if uncertainty in the mode shapes was attenuated through the use of a sufficient number of repeated trials. Furthermore, studies using a limited sensor installation that could be achieved without interrupting the flow of traffic indicated that small scale damage could be detected and potentially located using sensors that are placed well away from the damaged area, provided uncertainty in mode shape was attenuated.
|
36 |
Homogenization and Bridging Multi-scale Methods for the Dynamic Analysis of Periodic SolidsGonella, Stefano 03 May 2007 (has links)
This work investigates the application of homogenization
techniques to the dynamic analysis of periodic solids, with
emphasis on lattice structures. The presented analysis is
conducted both through a Fourier-based technique and through an
alternative approach involving Taylor series expansions directly
performed in the spatial domain in conjunction with a finite
element formulation of the lattice unit cell. The challenge of
increasing the accuracy and the range of applicability of the
existing homogenization methods is addressed with various
techniques. Among them, a multi-cell homogenization is introduced
to extend the region of good approximation of the methods to
include the short wavelength limit. The continuous partial
differential equations resulting from the homogenization process
are also used to estimate equivalent mechanical properties of
lattices with various internal configurations. In particular, a
detailed investigation is conducted on the in-plane behavior of
hexagonal and re-entrant honeycombs, for which both static
properties and wave propagation characteristics are retrieved by
applying the proposed techniques. The analysis of wave propagation
in homogenized media is furthermore investigated by means of the
bridging scales method to address the problem of modelling
travelling waves in homogenized media with localized
discontinuities. This multi-scale approach reduces the
computational cost associated with a detailed finite element
analysis conducted over the entire domain and yields considerable
savings in CPU time. The combined use of homogenization and
bridging method is suggested as a powerful tool for fast and
accurate wave simulation and its potentials for NDE applications
are discussed.
|
37 |
Damage Detection In Beams By Wavelet AnalysisYanilmaz, Huseyin 01 December 2007 (has links) (PDF)
In this thesis, a method proposed by Han et al. [40] for detecting and locating damage in a structural member was adapted. The method was based on the energies that were calculated from the CWT coefficients of vibrational response of a cantilever beam. A transverse cut at varying depths was introduced. The presence and location of crack was investigated by processing experimentally acquired acceleration signals.
Results of modal analysis and wavelet analysis of the beam with different cut depths were compared. In addition, effect of using different mother wavelets in CWT analysis for damage detection capability was investigated. Acceleration data were analyzed through CWT at different scales and CWT coefficients were calculated. Those CWT coefficients obtained from different scales were evaluated from the standpoint of damage detection. Effectiveness of energy indices associated with CWT coefficients in damage detection was demonstrated as independent of the type of mother wavelet.
|
38 |
Guided Wave Inspection of Pipes Using Electromagnetic Acoustic TransducersVasiljevic, Milos January 2007 (has links)
This research covers modeling of Electro Magnetic Acoustic Transducers (EMATs) and their application in excitation and detection of longitudinal guided Lamb wave modes for evaluation of flaws in cylindrical pipes. The combination of the configuration of transducers and the frequency of the input current is essential for successful excitation of desired guided wave modes and for proper interpretation of the results. In this study EMATs were successfully constructed and longitudinal modes L(0,1) and L(0,2) were excited in the pipe. From the recorded signals the level of simulated damage in pipes could be assessed. It is also possible to theoretically predict the location of the pipe flaws. Theoretical predictions are matched with experimental results. Dents and holes in pipes are detected by appropriate signal processing of received L(0,1) and L(0,2) modes.
|
39 |
EXPERIMENTAL VALIDATION OF A NOVEL STRUCTURAL HEALTH MONITORING STRATEGY FOR BOLTED PIPELINE JOINTSBriand, Julie 18 August 2010 (has links)
The early detection of damage of in-service structural or mechanical systems is of vital importance. With early detection, the damage may be repaired before the integrity of the system is jeopardized, avoiding possible monetary losses, environmental impacts, injury and death. With this goal in mind, many structural health monitoring techniques have been developed which use a combination of sensors and algorithms to collect, process and interpret data to detect damage in a structure. This thesis presents work completed in support of the experimental validation of a novel structural health monitoring technique developed with the aim of providing improved qualitative results compared to those methods currently available.
|
40 |
The Effect of Skin and Soft Tissue on Spinal Frequency Response MeasurementsDecker, Colleen Unknown Date
No description available.
|
Page generated in 0.1117 seconds