• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • Tagged with
  • 12
  • 12
  • 6
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Online thread and data mapping using the memory management unit / Mapeamento dinâmico de threads e dados usando a unidade de gerência de memória

Cruz, Eduardo Henrique Molina da January 2016 (has links)
Conforme o paralelismo a nível de threads aumenta nas arquiteturas modernas devido ao aumento do número de núcleos por processador e processadores por sistema, a complexidade da hierarquia de memória também aumenta. Tais hierarquias incluem diversos níveis de caches privadas ou compartilhadas e tempo de acesso não uniforme à memória. Um desafio importante em tais arquiteturas é a movimentação de dados entre os núcleos, caches e bancos de memória primária, que ocorre quando um núcleo realiza uma transação de memória. Neste contexto, a redução da movimentação de dados é um dos pilares para futuras arquiteturas para manter o aumento de desempenho e diminuir o consumo de energia. Uma das soluções adotadas para reduzir a movimentação de dados é aumentar a localidade dos acessos à memória através do mapeamento de threads e dados. Mecanismos de mapeamento do estado-da-arte aumentam a localidade de memória mapeando threads que compartilham um grande volume de dados em núcleos próximos na hierarquia de memória (mapeamento de threads), e mapeando os dados em bancos de memória próximos das threads que os acessam (mapeamento de dados). Muitas propostas focam em mapeamento de threads ou dados separadamente, perdendo oportunidades de ganhar desempenho. Outras propostas dependem de traços de execução para realizar um mapeamento estático, que podem impor uma sobrecarga alta e não podem ser usados em aplicações cujos comportamentos de acesso à memória mudam em diferentes execuções. Há ainda propostas que usam amostragem ou informações indiretas sobre o padrão de acesso à memória, resultando em informação imprecisa sobre o acesso à memória. Nesta tese de doutorado, são propostas soluções inovadoras para identificar um mapeamento que otimize o acesso à memória fazendo uso da unidade de gerência de memória para monitor os acessos à memória. As soluções funcionam dinamicamente em paralelo com a execução da aplicação, detectando informações para o mapeamento de threads e dados. Com tais informações, o sistema operacional pode realizar o mapeamento durante a execução das aplicações, não necessitando de conhecimento prévio sobre o comportamento da aplicação. Como as soluções funcionam diretamente na unidade de gerência de memória, elas podem monitorar a maioria dos acessos à memória com uma baixa sobrecarga. Em arquiteturas com TLB gerida por hardware, as soluções podem ser implementadas com pouco hardware adicional. Em arquiteturas com TLB gerida por software, algumas das soluções podem ser implementadas sem hardware adicional. As soluções aqui propostas possuem maior precisão que outros mecanismos porque possuem acesso a mais informações sobre o acesso à memória. Para demonstrar os benefícios das soluções propostas, elas são avaliadas com uma variedade de aplicações usando um simulador de sistema completo, uma máquina real com TLB gerida por software, e duas máquinas reais com TLB gerida por hardware. Na avaliação experimental, as soluções reduziram o tempo de execução em até 39%. O ganho de desempenho se deu por uma redução substancial da quantidade de faltas na cache, e redução do tráfego entre processadores. / As thread-level parallelism increases in modern architectures due to larger numbers of cores per chip and chips per system, the complexity of their memory hierarchies also increase. Such memory hierarchies include several private or shared cache levels, and Non-Uniform Memory Access nodes with different access times. One important challenge for these architectures is the data movement between cores, caches, and main memory banks, which occurs when a core performs a memory transaction. In this context, the reduction of data movement is an important goal for future architectures to keep performance scaling and to decrease energy consumption. One of the solutions to reduce data movement is to improve memory access locality through sharing-aware thread and data mapping. State-of-the-art mapping mechanisms try to increase locality by keeping threads that share a high volume of data close together in the memory hierarchy (sharing-aware thread mapping), and by mapping data close to where its accessing threads reside (sharing-aware data mapping). Many approaches focus on either thread mapping or data mapping, but perform them separately only, losing opportunities to improve performance. Some mechanisms rely on execution traces to perform a static mapping, which have a high overhead and can not be used if the behavior of the application changes between executions. Other approaches use sampling or indirect information about the memory access pattern, resulting in imprecise memory access information. In this thesis, we propose novel solutions to identify an optimized sharing-aware mapping that make use of the memory management unit of processors to monitor the memory accesses. Our solutions work online in parallel to the execution of the application and detect the memory access pattern for both thread and data mappings. With this information, the operating system can perform sharing-aware thread and data mapping during the execution of the application, without any prior knowledge of their behavior. Since they work directly in the memory management unit, our solutions are able to track most memory accesses performed by the parallel application, with a very low overhead. They can be implemented in architectures with hardwaremanaged TLBs with little additional hardware, and some can be implemented in architectures with software-managed TLBs without any hardware changes. Our solutions have a higher accuracy than previous mechanisms because they have access to more accurate information about the memory access behavior. To demonstrate the benefits of our proposed solutions, we evaluate them with a wide variety of applications using a full system simulator, a real machine with software-managed TLBs, and a trace-driven evaluation in two real machines with hardware-managed TLBs. In the experimental evaluation, our proposals were able to reduce execution time by up to 39%. The improvements happened to a substantial reduction in cache misses and interchip interconnection traffic.
2

Online thread and data mapping using the memory management unit / Mapeamento dinâmico de threads e dados usando a unidade de gerência de memória

Cruz, Eduardo Henrique Molina da January 2016 (has links)
Conforme o paralelismo a nível de threads aumenta nas arquiteturas modernas devido ao aumento do número de núcleos por processador e processadores por sistema, a complexidade da hierarquia de memória também aumenta. Tais hierarquias incluem diversos níveis de caches privadas ou compartilhadas e tempo de acesso não uniforme à memória. Um desafio importante em tais arquiteturas é a movimentação de dados entre os núcleos, caches e bancos de memória primária, que ocorre quando um núcleo realiza uma transação de memória. Neste contexto, a redução da movimentação de dados é um dos pilares para futuras arquiteturas para manter o aumento de desempenho e diminuir o consumo de energia. Uma das soluções adotadas para reduzir a movimentação de dados é aumentar a localidade dos acessos à memória através do mapeamento de threads e dados. Mecanismos de mapeamento do estado-da-arte aumentam a localidade de memória mapeando threads que compartilham um grande volume de dados em núcleos próximos na hierarquia de memória (mapeamento de threads), e mapeando os dados em bancos de memória próximos das threads que os acessam (mapeamento de dados). Muitas propostas focam em mapeamento de threads ou dados separadamente, perdendo oportunidades de ganhar desempenho. Outras propostas dependem de traços de execução para realizar um mapeamento estático, que podem impor uma sobrecarga alta e não podem ser usados em aplicações cujos comportamentos de acesso à memória mudam em diferentes execuções. Há ainda propostas que usam amostragem ou informações indiretas sobre o padrão de acesso à memória, resultando em informação imprecisa sobre o acesso à memória. Nesta tese de doutorado, são propostas soluções inovadoras para identificar um mapeamento que otimize o acesso à memória fazendo uso da unidade de gerência de memória para monitor os acessos à memória. As soluções funcionam dinamicamente em paralelo com a execução da aplicação, detectando informações para o mapeamento de threads e dados. Com tais informações, o sistema operacional pode realizar o mapeamento durante a execução das aplicações, não necessitando de conhecimento prévio sobre o comportamento da aplicação. Como as soluções funcionam diretamente na unidade de gerência de memória, elas podem monitorar a maioria dos acessos à memória com uma baixa sobrecarga. Em arquiteturas com TLB gerida por hardware, as soluções podem ser implementadas com pouco hardware adicional. Em arquiteturas com TLB gerida por software, algumas das soluções podem ser implementadas sem hardware adicional. As soluções aqui propostas possuem maior precisão que outros mecanismos porque possuem acesso a mais informações sobre o acesso à memória. Para demonstrar os benefícios das soluções propostas, elas são avaliadas com uma variedade de aplicações usando um simulador de sistema completo, uma máquina real com TLB gerida por software, e duas máquinas reais com TLB gerida por hardware. Na avaliação experimental, as soluções reduziram o tempo de execução em até 39%. O ganho de desempenho se deu por uma redução substancial da quantidade de faltas na cache, e redução do tráfego entre processadores. / As thread-level parallelism increases in modern architectures due to larger numbers of cores per chip and chips per system, the complexity of their memory hierarchies also increase. Such memory hierarchies include several private or shared cache levels, and Non-Uniform Memory Access nodes with different access times. One important challenge for these architectures is the data movement between cores, caches, and main memory banks, which occurs when a core performs a memory transaction. In this context, the reduction of data movement is an important goal for future architectures to keep performance scaling and to decrease energy consumption. One of the solutions to reduce data movement is to improve memory access locality through sharing-aware thread and data mapping. State-of-the-art mapping mechanisms try to increase locality by keeping threads that share a high volume of data close together in the memory hierarchy (sharing-aware thread mapping), and by mapping data close to where its accessing threads reside (sharing-aware data mapping). Many approaches focus on either thread mapping or data mapping, but perform them separately only, losing opportunities to improve performance. Some mechanisms rely on execution traces to perform a static mapping, which have a high overhead and can not be used if the behavior of the application changes between executions. Other approaches use sampling or indirect information about the memory access pattern, resulting in imprecise memory access information. In this thesis, we propose novel solutions to identify an optimized sharing-aware mapping that make use of the memory management unit of processors to monitor the memory accesses. Our solutions work online in parallel to the execution of the application and detect the memory access pattern for both thread and data mappings. With this information, the operating system can perform sharing-aware thread and data mapping during the execution of the application, without any prior knowledge of their behavior. Since they work directly in the memory management unit, our solutions are able to track most memory accesses performed by the parallel application, with a very low overhead. They can be implemented in architectures with hardwaremanaged TLBs with little additional hardware, and some can be implemented in architectures with software-managed TLBs without any hardware changes. Our solutions have a higher accuracy than previous mechanisms because they have access to more accurate information about the memory access behavior. To demonstrate the benefits of our proposed solutions, we evaluate them with a wide variety of applications using a full system simulator, a real machine with software-managed TLBs, and a trace-driven evaluation in two real machines with hardware-managed TLBs. In the experimental evaluation, our proposals were able to reduce execution time by up to 39%. The improvements happened to a substantial reduction in cache misses and interchip interconnection traffic.
3

Online thread and data mapping using the memory management unit / Mapeamento dinâmico de threads e dados usando a unidade de gerência de memória

Cruz, Eduardo Henrique Molina da January 2016 (has links)
Conforme o paralelismo a nível de threads aumenta nas arquiteturas modernas devido ao aumento do número de núcleos por processador e processadores por sistema, a complexidade da hierarquia de memória também aumenta. Tais hierarquias incluem diversos níveis de caches privadas ou compartilhadas e tempo de acesso não uniforme à memória. Um desafio importante em tais arquiteturas é a movimentação de dados entre os núcleos, caches e bancos de memória primária, que ocorre quando um núcleo realiza uma transação de memória. Neste contexto, a redução da movimentação de dados é um dos pilares para futuras arquiteturas para manter o aumento de desempenho e diminuir o consumo de energia. Uma das soluções adotadas para reduzir a movimentação de dados é aumentar a localidade dos acessos à memória através do mapeamento de threads e dados. Mecanismos de mapeamento do estado-da-arte aumentam a localidade de memória mapeando threads que compartilham um grande volume de dados em núcleos próximos na hierarquia de memória (mapeamento de threads), e mapeando os dados em bancos de memória próximos das threads que os acessam (mapeamento de dados). Muitas propostas focam em mapeamento de threads ou dados separadamente, perdendo oportunidades de ganhar desempenho. Outras propostas dependem de traços de execução para realizar um mapeamento estático, que podem impor uma sobrecarga alta e não podem ser usados em aplicações cujos comportamentos de acesso à memória mudam em diferentes execuções. Há ainda propostas que usam amostragem ou informações indiretas sobre o padrão de acesso à memória, resultando em informação imprecisa sobre o acesso à memória. Nesta tese de doutorado, são propostas soluções inovadoras para identificar um mapeamento que otimize o acesso à memória fazendo uso da unidade de gerência de memória para monitor os acessos à memória. As soluções funcionam dinamicamente em paralelo com a execução da aplicação, detectando informações para o mapeamento de threads e dados. Com tais informações, o sistema operacional pode realizar o mapeamento durante a execução das aplicações, não necessitando de conhecimento prévio sobre o comportamento da aplicação. Como as soluções funcionam diretamente na unidade de gerência de memória, elas podem monitorar a maioria dos acessos à memória com uma baixa sobrecarga. Em arquiteturas com TLB gerida por hardware, as soluções podem ser implementadas com pouco hardware adicional. Em arquiteturas com TLB gerida por software, algumas das soluções podem ser implementadas sem hardware adicional. As soluções aqui propostas possuem maior precisão que outros mecanismos porque possuem acesso a mais informações sobre o acesso à memória. Para demonstrar os benefícios das soluções propostas, elas são avaliadas com uma variedade de aplicações usando um simulador de sistema completo, uma máquina real com TLB gerida por software, e duas máquinas reais com TLB gerida por hardware. Na avaliação experimental, as soluções reduziram o tempo de execução em até 39%. O ganho de desempenho se deu por uma redução substancial da quantidade de faltas na cache, e redução do tráfego entre processadores. / As thread-level parallelism increases in modern architectures due to larger numbers of cores per chip and chips per system, the complexity of their memory hierarchies also increase. Such memory hierarchies include several private or shared cache levels, and Non-Uniform Memory Access nodes with different access times. One important challenge for these architectures is the data movement between cores, caches, and main memory banks, which occurs when a core performs a memory transaction. In this context, the reduction of data movement is an important goal for future architectures to keep performance scaling and to decrease energy consumption. One of the solutions to reduce data movement is to improve memory access locality through sharing-aware thread and data mapping. State-of-the-art mapping mechanisms try to increase locality by keeping threads that share a high volume of data close together in the memory hierarchy (sharing-aware thread mapping), and by mapping data close to where its accessing threads reside (sharing-aware data mapping). Many approaches focus on either thread mapping or data mapping, but perform them separately only, losing opportunities to improve performance. Some mechanisms rely on execution traces to perform a static mapping, which have a high overhead and can not be used if the behavior of the application changes between executions. Other approaches use sampling or indirect information about the memory access pattern, resulting in imprecise memory access information. In this thesis, we propose novel solutions to identify an optimized sharing-aware mapping that make use of the memory management unit of processors to monitor the memory accesses. Our solutions work online in parallel to the execution of the application and detect the memory access pattern for both thread and data mappings. With this information, the operating system can perform sharing-aware thread and data mapping during the execution of the application, without any prior knowledge of their behavior. Since they work directly in the memory management unit, our solutions are able to track most memory accesses performed by the parallel application, with a very low overhead. They can be implemented in architectures with hardwaremanaged TLBs with little additional hardware, and some can be implemented in architectures with software-managed TLBs without any hardware changes. Our solutions have a higher accuracy than previous mechanisms because they have access to more accurate information about the memory access behavior. To demonstrate the benefits of our proposed solutions, we evaluate them with a wide variety of applications using a full system simulator, a real machine with software-managed TLBs, and a trace-driven evaluation in two real machines with hardware-managed TLBs. In the experimental evaluation, our proposals were able to reduce execution time by up to 39%. The improvements happened to a substantial reduction in cache misses and interchip interconnection traffic.
4

Sampling of Dynamic Dependence Graphs for Data Locality Analysis

Jhally, Gaganjit Singh 25 October 2016 (has links)
No description available.
5

ACTION : Adaptive Cache Block Migration in Distributed Cache Architectures

Mummidi, Chandra Sekhar 20 October 2021 (has links)
Increasing number of cores in chip multiprocessors (CMP) result in increasing traffic to last-level cache (LLC). Without commensurate increase in LLC bandwidth, such traffic cannot be sustained resulting in loss of performance. Further, as the number of cores increases, it is necessary to scale up the LLC size; otherwise, the LLC miss rate will rise, resulting in a loss of performance. Unfortunately, for a unified LLC with uniform cache access time, access latency increases with cache size, resulting in performance loss. Previously, researchers have proposed partitioning the cache into multiple smaller caches interconnected by a communication network which increases aggregate cache bandwidth but causes non-uniform access latency. Such a cache architecture is called non-uniform cache architecture (NUCA). While NUCA addresses the LLC bandwidth issue, partitioning by itself does not address the access latency problem. Consequently, researchers have previously considered data placement techniques to improve access latency. However, earlier data placement work did not account for the frequency with which specific memory references are accessed. A major reason for that is access frequency for all memory references is difficult to track. In this research, we present a hardware-assisted solution called ACTION (Adaptive Cache Block Migration) to track the access frequency of individual memory references and prioritize their placement closer to the affine core. ACTION mechanism implements cache block migration when there is a detectable change in access frequencies due to a change in the program phase. To keep the hardware overhead low, ACTION counts access references in the LLC stream using a simple and approximate method, and uses simple algorithms for placement and migration. We tested ACTION on a 4-core CMP with a 5x5 mesh LLC network implementing a partitioned D-NUCA against workloads exhibiting distinct asymmetry in cache block access frequency. Our simulation results indicate that ACTION can improve CMP performance by as much as 8% over the state-of-the-art (SOTA) solutions.
6

Scalability Analysis and Optimization for Large-Scale Deep Learning

Pumma, Sarunya 03 February 2020 (has links)
Despite its growing importance, scalable deep learning (DL) remains a difficult challenge. Scalability of large-scale DL is constrained by many factors, including those deriving from data movement and data processing. DL frameworks rely on large volumes of data to be fed to the computation engines for processing. However, current hardware trends showcase that data movement is already one of the slowest components in modern high performance computing systems, and this gap is only going to increase in the future. This includes data movement needed from the filesystem, within the network subsystem, and even within the node itself, all of which limit the scalability of DL frameworks on large systems. Even after data is moved to the computational units, managing this data is not easy. Modern DL frameworks use multiple components---such as graph scheduling, neural network training, gradient synchronization, and input pipeline processing---to process this data in an asynchronous uncoordinated manner, which results in straggler processes and consequently computational imbalance, further limiting scalability. This thesis studies a subset of the large body of data movement and data processing challenges that exist in modern DL frameworks. For the first study, we investigate file I/O constraints that limit the scalability of large-scale DL. We first analyze the Caffe DL framework with Lightning Memory-Mapped Database (LMDB), one of the most widely used file I/O subsystems in DL frameworks, to understand the causes of file I/O inefficiencies. Based on our analysis, we propose LMDBIO---an optimized I/O plugin for scalable DL that addresses the various shortcomings in existing file I/O for DL. Our experimental results show that LMDBIO significantly outperforms LMDB in all cases and improves overall application performance by up to 65-fold on 9,216 CPUs of the Blues and Bebop supercomputers at Argonne National Laboratory. Our second study deals with the computational imbalance problem in data processing. For most DL systems, the simultaneous and asynchronous execution of multiple data-processing components on shared hardware resources causes these components to contend with one another, leading to severe computational imbalance and degraded scalability. We propose various novel optimizations that minimize resource contention and improve performance by up to 35% for training various neural networks on 24,576 GPUs of the Summit supercomputer at Oak Ridge National Laboratory---the world's largest supercomputer at the time of writing of this thesis. / Doctor of Philosophy / Deep learning is a method for computers to automatically extract complex patterns and trends from large volumes of data. It is a popular methodology that we use every day when we talk to Apple Siri or Google Assistant, when we use self-driving cars, or even when we witnessed IBM Watson be crowned as the champion of Jeopardy! While deep learning is integrated into our everyday life, it is a complex problem that has gotten the attention of many researchers. Executing deep learning is a highly computationally intensive problem. On traditional computers, such as a generic laptop or desktop machine, the computation for large deep learning problems can take years or decades to complete. Consequently, supercomputers, which are machines with massive computational capability, are leveraged for deep learning workloads. The world's fastest supercomputer today, for example, is capable of performing almost 200 quadrillion floating point operations every second. While that is impressive, for large problems, unfortunately, even the fastest supercomputers today are not fast enough. The problem is not that they do not have enough computational capability, but that deep learning problems inherently rely on a lot of data---the entire concept of deep learning centers around the fact that the computer would study a huge volume of data and draw trends from it. Moving and processing this data, unfortunately, is much slower than the computation itself and with the current hardware trends it is not expected to get much faster in the future. This thesis aims at making deep learning executions on large supercomputers faster. Specifically, it looks at two pieces associated with managing data: (1) data reading---how to quickly read large amounts of data from storage, and (2) computational imbalance---how to ensure that the different processors on the supercomputer are not waiting for each other and thus wasting time. We first analyze each performance problem to identify the root cause of it. Then, based on the analysis, we propose several novel techniques to solve the problem. With our optimizations, we are able to significantly improve the performance of deep learning execution on a number of supercomputers, including Blues and Bebop at Argonne National Laboratory, and Summit---the world's fastest supercomputer---at Oak Ridge National Laboratory.
7

Techniques for Characterizing the Data Movement Complexity of Computations

Elango, Venmugil 08 June 2016 (has links)
No description available.
8

Models and Techniques for Green High-Performance Computing

Adhinarayanan, Vignesh 01 June 2020 (has links)
High-performance computing (HPC) systems have become power limited. For instance, the U.S. Department of Energy set a power envelope of 20MW in 2008 for the first exascale supercomputer now expected to arrive in 2021--22. Toward this end, we seek to improve the greenness of HPC systems by improving their performance per watt at the allocated power budget. In this dissertation, we develop a series of models and techniques to manage power at micro-, meso-, and macro-levels of the system hierarchy, specifically addressing data movement and heterogeneity. We target the chip interconnect at the micro-level, heterogeneous nodes at the meso-level, and a supercomputing cluster at the macro-level. Overall, our goal is to improve the greenness of HPC systems by intelligently managing power. The first part of this dissertation focuses on measurement and modeling problems for power. First, we study how to infer chip-interconnect power by observing the system-wide power consumption. Our proposal is to design a novel micro-benchmarking methodology based on data-movement distance by which we can properly isolate the chip interconnect and measure its power. Next, we study how to develop software power meters to monitor a GPU's power consumption at runtime. Our proposal is to adapt performance counter-based models for their use at runtime via a combination of heuristics, statistical techniques, and application-specific knowledge. In the second part of this dissertation, we focus on managing power. First, we propose to reduce the chip-interconnect power by proactively managing its dynamic voltage and frequency (DVFS) state. Toward this end, we develop a novel phase predictor that uses approximate pattern matching to forecast future requirements and in turn, proactively manage power. Second, we study the problem of applying a power cap to a heterogeneous node. Our proposal proactively manages the GPU power using phase prediction and a DVFS power model but reactively manages the CPU. The resulting hybrid approach can take advantage of the differences in the capabilities of the two devices. Third, we study how in-situ techniques can be applied to improve the greenness of HPC clusters. Overall, in our dissertation, we demonstrate that it is possible to infer power consumption of real hardware components without directly measuring them, using the chip interconnect and GPU as examples. We also demonstrate that it is possible to build models of sufficient accuracy and apply them for intelligently managing power at many levels of the system hierarchy. / Doctor of Philosophy / Past research in green high-performance computing (HPC) mostly focused on managing the power consumed by general-purpose processors, known as central processing units (CPUs) and to a lesser extent, memory. In this dissertation, we study two increasingly important components: interconnects (predominantly focused on those inside a chip, but not limited to them) and graphics processing units (GPUs). Our contributions in this dissertation include a set of innovative measurement techniques to estimate the power consumed by the target components, statistical and analytical approaches to develop power models and their optimizations, and algorithms to manage power statically and at runtime. Experimental results show that it is possible to build models of sufficient accuracy and apply them for intelligently managing power on multiple levels of the system hierarchy: chip interconnect at the micro-level, heterogeneous nodes at the meso-level, and a supercomputing cluster at the macro-level.
9

Intraspecific variation in environmental and geographic space use : insights from individual movement data

Bonnet-Lebrun, Anne-Sophie January 2018 (has links)
Species’ ranges arise from the interplay between environmental preferences, biotic and abiotic environmental conditions, and accessibility. Understanding of – and predictive models on – species distributions often build from the assumption that these factors apply homogenously within each species, but there is growing evidence for individual variation. Here, I use movement data to investigate individual-level decisions and compromises regarding the different costs and benefits influencing individuals’ geographic locations, and the species-level spatial patterns that emerge from these. I first developed a new method that uses tracking data to quantify individual specialisation in geographic space (site fidelity) or in environmental space (environmental specialisation). Applying it to two species of albatrosses, I found evidence of site fidelity but weak environmental specialisation. My results have implications for how limited research efforts are best-targeted: if animals are generalists, effort are best spent by understanding in depth individual patterns, i.e., better to track fewer individuals for long periods of time; whereas if animals tend to be specialists, efforts should be dedicated to tracking as many individuals as possible, even if for shorter periods. I then investigated individual migratory strategies and their drivers in nine North American bird species, using ringing/recovery data. I found latitudinal redistribution of individuals within the breeding and non-breeding ranges that generally did not follow textbook patterns (‘chain migration’ or ‘leapfrog migration’). Migratory individuals tend to trade off the benefits of migration (better tracking of climatic niche; better access to resources) and its costs (increasing with migratory distance). I found that birds are more likely to remain as residents in areas with warmer winter temperatures, higher summer resource surpluses and higher human population densities (presumably because of a buffering effect of urban areas). Overall, my results highlight the importance of considering individual variation to understanding the ecological processes underpinning species’ spatial patterns.
10

Characterizing applications by integrating andimproving tools for data locality analysis and programperformance

Singh, Saurabh 21 September 2017 (has links)
No description available.

Page generated in 0.1002 seconds