• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Data Poisoning Attacks on Linked Data with Graph Regularization

January 2019 (has links)
abstract: Social media has become the norm of everyone for communication. The usage of social media has increased exponentially in the last decade. The myriads of Social media services such as Facebook, Twitter, Snapchat, and Instagram etc allow people to connect with their friends, and followers freely. The attackers who try to take advantage of this situation has also increased at an exponential rate. Every social media service has its own recommender systems and user profiling algorithms. These algorithms use users current information to make different recommendations. Often the data that is formed from social media services is Linked data as each item/user is usually linked with other users/items. Recommender systems due to their ubiquitous and prominent nature are prone to several forms of attacks. One of the major form of attacks is poisoning the training set data. As recommender systems use current user/item information as the training set to make recommendations, the attacker tries to modify the training set in such a way that the recommender system would benefit the attacker or give incorrect recommendations and hence failing in its basic functionality. Most existing training set attack algorithms work with ``flat" attribute-value data which is typically assumed to be independent and identically distributed (i.i.d.). However, the i.i.d. assumption does not hold for social media data since it is inherently linked as described above. Usage of user-similarity with Graph Regularizer in morphing the training data produces best results to attacker. This thesis proves the same by demonstrating with experiments on Collaborative Filtering with multiple datasets. / Dissertation/Thesis / Masters Thesis Computer Science 2019
2

PREVENTING DATA POISONING ATTACKS IN FEDERATED MACHINE LEARNING BY AN ENCRYPTED VERIFICATION KEY

Mahdee, Jodayree 06 1900 (has links)
Federated learning has gained attention recently for its ability to protect data privacy and distribute computing loads [1]. It overcomes the limitations of traditional machine learning algorithms by allowing computers to train on remote data inputs and build models while keeping participant privacy intact. Traditional machine learning offered a solution by enabling computers to learn patterns and make decisions from data without explicit programming. It opened up new possibilities for automating tasks, recognizing patterns, and making predictions. With the exponential growth of data and advances in computational power, machine learning has become a powerful tool in various domains, driving innovations in fields such as image recognition, natural language processing, autonomous vehicles, and personalized recommendations. traditional machine learning, data is usually transferred to a central server, raising concerns about privacy and security. Centralizing data exposes sensitive information, making it vulnerable to breaches or unauthorized access. Centralized machine learning assumes that all data is available at a central location, which is only sometimes practical or feasible. Some data may be distributed across different locations, owned by different entities, or subject to legal or privacy restrictions. Training a global model in traditional machine learning involves frequent communication between the central server and participating devices. This communication overhead can be substantial, particularly when dealing with large-scale datasets or resource-constrained devices. / Recent studies have uncovered security issues with most of the federated learning models. One common false assumption in the federated learning model is that participants are the attacker and would not use polluted data. This vulnerability enables attackers to train their models using polluted data and then send the polluted updates to the training server for aggregation, potentially poisoning the overall model. In such a setting, it is challenging for an edge server to thoroughly inspect the data used for model training and supervise any edge device. This study evaluates the vulnerabilities present in federated learning and explores various types of attacks that can occur. This paper presents a robust prevention scheme to address these vulnerabilities. The proposed prevention scheme enables federated learning servers to monitor participants actively in real-time and identify infected individuals by introducing an encrypted verification scheme. The paper outlines the protocol design of this prevention scheme and presents experimental results that demonstrate its effectiveness. / Thesis / Doctor of Philosophy (PhD) / federated learning models face significant security challenges and can be vulnerable to attacks. For instance, federated learning models assume participants are not attackers and will not manipulate the data. However, in reality, attackers can compromise the data of remote participants by inserting fake or altering existing data, which can result in polluted training results being sent to the server. For instance, if the sample data is an animal image, attackers can modify it to contaminate the training data. This paper introduces a robust preventive approach to counter data pollution attacks in real-time. It incorporates an encrypted verification scheme into the federated learning model, preventing poisoning attacks without the need for specific attack detection programming. The main contribution of this paper is a mechanism for detection and prevention that allows the training server to supervise real-time training and stop data modifications in each client's storage before and between training rounds. The training server can identify real-time modifications and remove infected remote participants with this scheme.

Page generated in 0.0833 seconds