• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

From Horn-SRIQ to Datalog: A Data-Independent Transformation that Preserves Assertion Entailment: Extended Version

Carral, David, González, Larry, Koopmann, Patrick 20 June 2022 (has links)
Ontology-based access to large data-sets has recently gained a lot of attention. To access data e_ciently, one approach is to rewrite the ontology into Datalog, and then use powerful Datalog engines to compute implicit entailments. Existing rewriting techniques support Description Logics (DLs) from ELH to Horn-SHIQ. We go one step further and present one such data-independent rewriting technique for Horn-SRIQ⊓, the extension of Horn-SHIQ that supports role chain axioms, an expressive feature prominently used in many real-world ontologies. We evaluated our rewriting technique on a large known corpus of ontologies. Our experiments show that the resulting rewritings are of moderate size, and that our approach is more efficient than state-of-the-art DL reasoners when reasoning with data-intensive ontologies. / This is an extended version of the article to appear in the proceedings of AAAI 2019.
2

Temporal Query Answering in EL

Borgwardt, Stefan, Thost, Veronika 20 June 2022 (has links)
Context-aware systems use data about their environment for adaptation at runtime, e.g., for optimization of power consumption or user experience. Ontology-based data access (OBDA) can be used to support the interpretation of the usually large amounts of data. OBDA augments query answering in databases by dropping the closed-world assumption (i.e., the data is not assumed to be complete any more) and by including domain knowledge provided by an ontology. We focus on a recently proposed temporalized query language that allows to combine conjunctive queries with the operators of the well-known propositional temporal logic LTL. In particular, we investigate temporalized OBDA w.r.t. ontologies in the DL EL, which allows for efficient reasoning and has been successfully applied in practice. We study both data and combined complexity of the query entailment problem.
3

On Implementing Temporal Query Answering in DL-Lite

Thost, Veronika, Holste, Jan, Özçep, Özgür 20 June 2022 (has links)
Ontology-based data access augments classical query answering over fact bases by adopting the open-world assumption and by including domain knowledge provided by an ontology. We implemented temporal query answering w.r.t. ontologies formulated in the Description Logic DL-Lite. Focusing on temporal conjunctive queries (TCQs), which combine conjunctive queries via the operators of propositional linear temporal logic, we regard three approaches for answering them: an iterative algorithm that considers all data available; a window-based algorithm; and a rewriting approach, which translates the TCQs to be answered into SQL queries. Since the relevant ontological knowledge is already encoded into the latter queries, they can be answered by a standard database system. Our evaluation especially shows that implementations of both the iterative and the window-based algorithm answer TCQs within a few milliseconds, and that the former achieves a constant performance, even if data is growing over time.
4

Temporal Query Answering w.r.t. DL-Lite-Ontologies

Borgwardt, Stefan, Lippmann, Marcel, Thost, Veronika 20 June 2022 (has links)
Ontology-based data access (OBDA) generalizes query answering in relational databases. It allows to query a database by using the language of an ontology, abstracting from the actual relations of the database. For ontologies formulated in Description Logics of the DL-Lite family, OBDA can be realized by rewriting the query into a classical first-order query, e.g. an SQL query, by compiling the information of the ontology into the query. The query is then answered using classical database techniques. In this report, we consider a temporal version of OBDA. We propose a temporal query language that combines a linear temporal logic with queries over DL-Litecore-ontologies. This language is well-suited for expressing temporal properties of dynamical systems and is useful in context-aware applications that need to detect specific situations. Using a first-order rewriting approach, we transform our temporal queries into queries over a temporal database. We then present three approaches to answering the resulting queries, all having different advantages and drawbacks. / This revised version proves that the presented algorithm achieves a bounded history encoding.
5

Reasoning with Temporal Properties over Axioms of DL-Lite

Borgwardt, Stefan, Lippmann, Marcel, Thost, Veronika 20 June 2022 (has links)
Recently, a lot of research has combined description logics (DLs) of the DL-Lite family with temporal formalisms. Such logics are proposed to be used for situation recognition and temporalized ontology-based data access. In this report, we consider DL-Lite-LTL, in which axioms formulated in a member of the DL-Lite family are combined using the operators of propositional linear-time temporal logic (LTL). We consider the satisfiability problem of this logic in the presence of so-called rigid symbols whose interpretation does not change over time. In contrast to more expressive temporalized DLs, the computational complexity of this problem is the same as for LTL, even w.r.t. rigid symbols.
6

On the Complexity of Temporal Query Answering

Baader, Franz, Borgwardt, Stefan, Lippmann, Marcel 20 June 2022 (has links)
Ontology-based data access (OBDA) generalizes query answering in databases towards deduction since (i) the fact base is not assumed to contain complete knowledge (i.e., there is no closed world assumption), and (ii) the interpretation of the predicates occurring in the queries is constrained by axioms of an ontology. OBDA has been investigated in detail for the case where the ontology is expressed by an appropriate Description Logic (DL) and the queries are conjunctive queries. Motivated by situation awareness applications, we investigate an extension of OBDA to the temporal case. As query language we consider an extension of the well-known propositional temporal logic LTL where conjunctive queries can occur in place of propositional variables, and as ontology language we use the prototypical expressive DL ALC. For the resulting instance of temporalized OBDA, we investigate both data complexity and combined complexity of the query entailment problem.
7

Temporal Conjunctive Queries in Expressive DLs with Non-simple Roles

Baader, Franz, Borgwardt, Stefan, Lippmann, Marcel 20 June 2022 (has links)
In Ontology-Based Data Access (OBDA), user queries are evaluated over a set of facts under the open world assumption, while taking into account background knowledge given in the form of a Description Logic (DL) ontology. Motivated by situation awareness applications, temporal conjunctive queries (TCQs) have recently been proposed as a useful extension of traditional OBDA to support the processing of temporal information. This paper extends the existing complexity analysis of TCQ entailment to very expressive DLs underlying the OWL 2 standard, and in contrast to previous work also allows for queries containing transitive roles. / This is an extended version of the paper “Temporal Conjunctive Queries in Expressive Description Logics with Transitive Roles”, published in the Proceedings of the 28th Australasian Joint Conference on Artificial Intelligence (AI’15).

Page generated in 0.0587 seconds