1 |
South African Sign Language Hand Shape and Orientation Recognition on Mobile Devices Using Deep LearningJacobs, Kurt January 2017 (has links)
>Magister Scientiae - MSc / In order to classify South African Sign Language as a signed gesture, five fundamental parameters need to be considered. These five parameters to be considered are: hand shape, hand orientation, hand motion, hand location and facial expressions. The research in this thesis will utilise Deep Learning techniques, specifically Convolutional Neural Networks, to recognise hand shapes in various hand orientations. The research will focus on two of the five fundamental parameters, i.e., recognising six South African Sign Language hand shapes for each of five different hand orientations. These hand shape and orientation combinations will be recognised by means of a video stream captured on a mobile device. The efficacy of Convolutional Neural Network for gesture recognition will be judged with respect to its classification accuracy and classification speed in both a desktop and embedded context. The research methodology employed to carry out the research was Design Science Research. Design Science Research refers to a set of analytical techniques and perspectives for performing research in the field of Information Systems and Computer Science. Design Science Research necessitates the design of an artefact and the analysis thereof in order to better understand its behaviour in the context of Information Systems or Computer Science. / National Research Foundation (NRF)
|
2 |
Deep YOLO-Based Detection of Breast Cancer Mitotic-Cells in Histopathological ImagesMaisun Mohamed, Al Zorgani,, Irfan, Mehmood,, Hassan,Ugail,, Al Zorgani, Maisun M., Mehmood, Irfan, Ugail, Hassan 25 March 2022 (has links)
yes / Coinciding with advances in whole-slide imaging scanners, it is become essential to automate the conventional image-processing techniques to assist pathologists with some tasks such as mitotic-cells detection. In histopathological images analysing, the mitotic-cells counting is a significant biomarker in the prognosis of the breast cancer grade and its aggressiveness. However, counting task of mitotic-cells is tiresome, tedious and time-consuming due to difficulty distinguishing between mitotic cells and normal cells. To tackle this challenge, several deep learning-based approaches of Computer-Aided Diagnosis (CAD) have been lately advanced to perform counting task of mitotic-cells in the histopathological images. Such CAD systems achieve outstanding performance, hence histopathologists can utilise them as a second-opinion system. However, improvement of CAD systems is an important with the progress of deep learning networks architectures. In this work, we investigate deep YOLO (You Only Look Once) v2 network for mitotic-cells detection on ICPR (International Conference on Pattern Recognition) 2012 dataset of breast cancer histopathology. The obtained results showed that proposed architecture achieves good result of 0.839 F1-measure.
|
Page generated in 0.1095 seconds