• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Deep Learning in der Krebsdiagnostik − Chancen überstrahlen die Risiken

Köhler, Till 28 December 2018 (has links)
Krebs ist die zweithäufigste Todesursache weltweit und zählt damit zu den größten Plagen der Menschheit. Jährlich sterben Menschen an den Folgen bösartiger Tumore und stellen Ärzte vor scheinbar unlösbare Aufgaben. Um Krebsgeschwüre effizient bekämpfen oder sogar vollständig beseitigen zu können, ist es enorm wichtig diese früh genug zu diagnostizieren. Oft stellt jedoch genau das in der Praxis ein großes Problem dar und Tumore werden erst dann als solche erkannt, wenn das Zellwachstum schon sehr weit fortgeschritten ist. Eine große Chance für die frühzeitige Erkennung von Krebs bieten unterdessen Deep Learning Algorithmen. Die vorliegende Seminararbeit stellt diese Verfahren und ihre Anwendung in der Krebsdiagnostik vor. Es wird hierbei genauer auf Convolutional Neural Networks eingegangen, die besonders gut geeignet für die Analyse von Gewebebildern sind und unter anderem auch im System von Google's DeepMind zum Einsatz kommen. Die Arbeit analysiert Chancen und Risiken des Einsatzes von Deep Neural Networks bei der Diagnose von bösartigen Tumoren und verschafft dem Leser damit einen ganzheitlichen Überblick über die Anwendung von Deep Neural Networks im Bereich der Onkologie.:1 Einleitung 2 Vom Neuronalen Netz zum Deep Learning Algorithmus 2.1 Grundlagen Künstlicher Neuronaler Netze 2.1.1 Allgemeiner Aufbau 2.1.2 Das Neuron als Grundbaustein 2.1.3 Lernen in neuronalen Netzen 2.1.4 Loss Function und Optimizer 2.2 Convolutional Neural Networks 2.2.1 Convolutional Layer 2.2.2 Pooling Layer 2.2.3 Fully Connected Layer 2.2.4 Lernen und Aktivierung in CNN’s 3 DeepMind als Deep Learning Multitalent 3.1 Bisherige Erfolge 3.2 DeepMind Health 4 Chancen und Risiken in der Krebsdiagnostik 4.1 Aktueller Stand der Brustkrebsdiagnostik 4.2 Chancen von Deep Learning Algorithmen 4.3 Ethische Risiken 4.3.1 False Positives 4.3.2 False Negatives 4.4 Fazit der Risikoanalyse 5 Ausblick
2

Zlepšování systému pro automatické hraní hry Starcraft II v prostředí PySC2 / Improving Bots Playing Starcraft II Game in PySC2 Environment

Krušina, Jan January 2018 (has links)
The aim of this thesis is to create an automated system for playing a real-time strategy game Starcraft II. Learning from replays via supervised learning and reinforcement learning techniques are used for improving bot's behavior. The proposed system should be capable of playing the whole game utilizing PySC2 framework for machine learning. Performance of the bot is evaluated against the built-in scripted AI in the game.

Page generated in 0.0379 seconds