• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The study of two transmembrane autophagy proteins and the autophagy receptor, p62

Runwal, Gautam January 2019 (has links)
Autophagy is an evolutionarily conserved process across eukaryotes that is responsible for degradation of cargo such as aggregate-prone proteins, pathogens, damaged organelles, macromolecules etc. via its delivery to lysosomes. The process is known to involve the formation of a double-membraned structure, called autophagosome, that engulfs the cargo destined for degradation and delivers its contents by fusing with lysosomes. This process involves several proteins at its core which include two transmembrane proteins, ATG9 and VMP1. While ATG9 and VMP1 has been discovered for about a decade and half, the trafficking and function of these proteins remain relatively unclear. My work in this thesis identifies and characterises a novel trafficking route for ATG9 and VMP1 and shows that both these proteins traffic via the dynamin-independent ARF6-associated pathway. Moreover, I also show that these proteins physically interact with each other. In addition, the tools developed during these studies helped me identify a new role for the most common autophagy receptor protein, p62. I show that p62 can specifically associate with and sequester LC3-I in autophagy-impaired cells (ATG9 and ATG16 null cells) leading to formation of LC3-positive structures that can be misinterpreted as mature autophagosomes. Perturbations in the levels of p62 were seen to affect the formation of these LC3-positive structures in cells. This observation, therefore, questions the reliability of LC3-immunofluorescence assays in autophagy-impaired cells as method of assessing autophagy and points towards the homeostatic function played by p62 in autophagy-impaired cells.
2

SMN-deficient cells exhibit increased ribosomal DNA damage.

01 November 2023 (has links)
Yes / Spinal muscular atrophy, the leading genetic cause of infant mortality, is a motor neuron disease caused by low levels of survival motor neuron (SMN) protein. SMN is a multifunctional protein that is implicated in numerous cytoplasmic and nuclear processes. Recently, increasing attention is being paid to the role of SMN in the maintenance of DNA integrity. DNA damage and genome instability have been linked to a range of neurodegenerative diseases. The ribosomal DNA (rDNA) represents a particularly unstable locus undergoing frequent breakage. Instability in rDNA has been associated with cancer, premature ageing syndromes, and a number of neurodegenerative disorders. Here, we report that SMN-deficient cells exhibit increased rDNA damage leading to impaired ribosomal RNA synthesis and translation. We also unravel an interaction between SMN and RNA polymerase I. Moreover, we uncover an spinal muscular atrophy motor neuron-specific deficiency of DDX21 protein, which is required for resolving R-loops in the nucleolus. Taken together, our findings suggest a new role of SMN in rDNA integrity.

Page generated in 0.0829 seconds