Spelling suggestions: "subject:"degradadores"" "subject:"degradados""
1 |
Mechanistic analysis of selective inhibition of RNA processing in Escherichia coliZhou, Li, doctor of microbiology 03 January 2013 (has links)
In Escherichia coli, the RNA degradosome is a protein complex involved in the general degradation of mRNA and in post-transcriptional gene regulation. The principal components of the degradosome complex are the endoribonuclease RNase E, the phosphorolytic exoribonuclease PNPase, the ATP-dependent RNA helicase RhlB, and the glycolytic enzyme enolase. The RNase E protein is a 1061 amino acid protein which can be divided into three major functional portions: the N-terminal catalytic activity portion; the central membrane anchoring and RNA binding portion; and the C terminal protein-interaction portion which bind to other major degradosome components.
RraA and RraB (Regulator of RNase E activity) are protein regulators of RNase E discovered in our lab, which regulate RNase E by binding to the RNase E C-terminal region. The work presented here describes the regulation of rraB gene expression and in vitro studies of degradosome assembly and the effects of RraA/RraB inhibition.
rraB is transcribed from its own promoter PrraB. A transposon insertion into glmS encoding glucosamine-6P synthase resulted in a 4 fold increase in the PrraB activity from a PrraB-lacZ fusion the indicating that glmS is serves as a negative regulator of rraB transcription. Consistent with this discovery, real-time RT-PCR revealed that glmS::Tn5 results in a 5-fold increase on the steady-state level of rraB mRNA.
As part of this work we have reconstituted the degradosome from individually purified proteins. The binding sites of RraA and RraB overlap with the RNA binding and the RhlB interaction sites within the C-terminus of RNase E. We have characterized the effects of RraA and RraB on the decay of various RNA substrates by reconstituted degradosomes: RraA and RraB proteins were shown to inhibit the hydrolysis reaction a short substrate by RNase E by up to 50% in a mixed inhibition pattern. Inhibition of the decay of the long RNA substrates RNA1 or dsbC was much more severe with the RNA processing activity becoming reduced by as much as 80%. These studies have delineated the kinetic consequences of inhibition by RraA and RraB and provide further insights into the mechanisms that control RNA decay in bacteria. / text
|
2 |
Etude du dégradosome à ARN de la bactérie pathogène Helicobacter pylori / The RNA degradosome of bacterial pathogen Helicobacter pyloriGaltier, Eloïse 09 January 2017 (has links)
En attente d'autorisation pour diffusion du résumé / En attente d'autorisation pour diffusion du résumé
|
3 |
Localization and Function of RNases in Bacillus subtilisCascante-Estepa, Nora 22 February 2017 (has links)
No description available.
|
4 |
Auto-assemblage de la protéine bactérienne Hfq, actrice du métabolisme de l’ARN : rôle structural du domaine C-terminal. / Self-assembly of the bacterial protein Hfq, an actor of RNA metabolism : structural role of the C-terminal domain.Malabirade, Antoine, Baptiste, 06 October 2017 (has links)
La régulation de l’expression génique par des ARNs permet une réponse rapide et polyvalente des cellules à des changements environnementaux. Cependant, elle nécessite souvent des partenaires protéiques. La protéine bactérienne Hfq en est un bon exemple. Facteur de virulence, elle est présente chez une variété de procaryotes et intervient dans nombre de circuits de régulation. Structurellement, Hfq adopte un repliement caractéristique, le repliement Sm. Ainsi, Les feuillets β qui la constituent se regroupent et forment un hexamère toroïdal. Outre cette région N-terminale, il existe aussi parfois une région C-terminale (CTR) de séquence et de longueur variables. Chez E. coli, cette région comprend une trentaine de résidus et est prédite comme non-structurée. Jusqu’à présent, son rôle n’a été que peu étudié.Ce travail de thèse met en lumière de nouvelles pistes quant à la fonction du CTR. Nous avons constaté sa capacité à former des fibres amyloïdes, expliquant la formation de structures auto-assemblées in vivo. De plus, la protéine est capable de lier l’ADN et de le condenser fortement in vitro. Cette compaction est complètement dépendante de la présence du CTR, qui permet de ponter les brins d’ADN. Ce résultat suggère une nouvelle fonction de Hfq dans la structuration du chromosome. Enfin, nous avons démontré que ce domaine permet aussi à Hfq de s’assembler à la surface d’une bicouche lipidique, expliquant sa localisation membranaire. La désorganisation de la membrane qui en résulte pourrait permettre le passage d’ARNs dans le milieu extracellulaire, avec d’importantes implications sur la capacité de la bactérie à interagir avec ses voisines et son environnement. / RNA-based regulations of gene expression allow quick and versatile responses from cells to changing environmental conditions. However, these regulations are often protein-mediated. The bacterial protein Hfq is one of the most studied RNA-based regulation partner. Found in various prokaryotes, it is an important virulence factor involved in many cellular processes. Hfq’s structure resembles a torus, formed by multiple β-sheets. Apart from this N-terminal region (NTR), a supplemental C-terminal region (CTR) with variable lengths and sequences may exist in some species. In E. coli, this specific region measures around 30 residues and is predicted as intrinsically disordered. Few studies focused on Hfq-CTR until recently.This work highlights new potential roles for Hfq-CTR. First, this region is able to self-interact and forms amyloid fibers which explains the self-assembled Hfq superstructures observed in vivo. Second, the protein can bind and efficiently condense DNA in vitro, strengthening the suggested role of Hfq in shaping the bacterial chromosome. This compaction is fully dependent on the CTR which is responsible for DNA bridging. Third, the CTR also gives to Hfq the ability to self-assemble on a lipid bilayer, explaining its membrane-localized fraction observed in vivo. The subsequent membrane reorganization might facilitate the release of RNAs in the extracellular medium, with potential implications on bacterial communication and interaction with surrounding cells and environment.
|
5 |
La protéine ribosomique S1 d'Escherichia coli au carrefour de la traduction et de la régulation de l'expression des gènes / Escherichia coli ribosomal protein S1 at the crossroad between translation and gene expressionDuval, Mélodie 06 November 2015 (has links)
La traduction est une étape clef de l’expression des gènes, et mon travail a consisté à étudier l’implication de la protéine ribosomique S1 d’Escherichia coli dans l’initiation de la traduction des ARNm structurés. Mes résultats montrent que 1) S1 est requise pour la formation du complexe d’initiation des ARNm portant une séquence SD faible et/ou des structures stables, 2) elle est dotée d’une activité chaperonne, débobinant les ARNm afin de les placer dans le canal de décodage ; et 3) le ribosome favorise son action. Par la suite, j’ai montré un rôle inattendu de S1 dans la régulation post-transcriptionnelle médiée par les ARNnc. En effet, la dégradation rapide de l’ARNm sodB, induite par l’ARNnc RyhB en absence de fer, est perdue dans une souche dont l’extrémité C-terminale de S1 a été supprimée, montrant ainsi un lien fonctionnel entre S1 et le dégradosome. Ainsi, S1 exerce de multiples fonctions qui se placent au carrefour de la traduction et de la régulation de l’expression des gènes / The translation is a key step for the gene expression, and the aim of my PhD was to analyze the involvment of Escherichia coli ribosomal protein S1 in the translation initiation of structured mRNAs.My results show that 1) S1 is required for the establishment of the active translation initiation complex involving mRNAs with a weak SD sequence and/or stable structures, 2) S1 has a RNA chaperone activity, unwinding the mRNA in order to accommodate it in the decoding channel, and 3) the ribosome promotes its activity.In the second part of my thesis, I unexpectedly showed that S1 is involved in the ncRNAmediated regulation. Indeed, the fast degradation of sodB mRNA, induced by RyhB ncRNA under iron depletion, is impaired in a strain depleted of the C-terminal part of S1 protein, thus highlighting a functional link between S1 and the degradosome.All in one, my results show that S1 is endowed with multiple functions, at the cross-road between translation and regulation of gene expression.
|
6 |
An mRNA degradation complex in Bacillus subtilis / mRNA Abbau in Bacillus subtilisLehnik-Habrink, Martin 26 October 2011 (has links)
No description available.
|
7 |
Interaction entre la RNase HI et la RNase E dans le métabolisme des R-loops et la dégradation des ARNms chez Escherichia coliEgbe Bessong, Harmony Jill 02 1900 (has links)
No description available.
|
Page generated in 0.0638 seconds