Spelling suggestions: "subject:"humidification.""
31 |
COUPLING ACTIVE HEAT EXCHANGE AND VACUUM MEMBRANE-BASED AIR DEHUMIDIFICATION FOR HIGH-EFFICIENCY AIR CONDITIONINGAndrew J Fix (17482464) 30 November 2023 (has links)
<p dir="ltr">Building cooling and ventilation account for nearly 10% of the global electricity consumption. In fact, a recent study even showed that, globally, dehumidification consumes more energy than sensible cooling. One high-efficiency dehumidification technology is selective membrane dehumidification. Selective membranes allow water vapor transport but block air transport. There are two overarching gaps in the literature that are addressed in this dissertation: (1) vacuum membrane dehumidification (VMD) has been rigidly defined as an isothermal process and (2) literature on one of the most efficient VMD system designs, which I will refer to as the “dual module humidity pump,” is limited to ideal thermodynamic modeling (no experimental demonstration or practical system modeling in the current literature).</p><p dir="ltr">This work presents a novel system concept, referred to as the “Active Membrane Energy Exchanger” (AMX), which specifically couples VMD and air cooling into one process to provide the first non-isothermal VMD system concept. The present study provides a wholistic understanding of the benefits and limitations of the AMX approach through both thermodynamic system modeling and experimental protype development and demonstration.</p><p dir="ltr">System models developed in Engineering Equation Solver were used to compare the energy performance of the AMX to other HVAC technologies. These models showed that the AMX could achieve up to 25% annual cooling electricity savings in commercial buildings and up to 60% annual cooling electricity savings in 100% outdoor air applications. Experiments showed that combining cooling and dehumidification increased membrane permeance by up to 40% and increased dehumidification performance by 3-6%. Further demonstration showed the prototype could remove up to 45% of the humidity in the humid air flow but struggled to reject all of that vapor to the exhaust air (mass transfer imbalance). This discovery enabled a practical thermofluid model to estimate theoretical and practical COP limits, which were approximately 40 and 10, respectively. Additionally, a global sensitivity analysis on the new model showed that mechanical design is far more limiting to the performance than material design.</p><p dir="ltr">In summary, this dissertation develops and demonstrates a novel air conditioning technology, from system modeling to prototype demonstration. This work was funded and guided by industry partners, and the results of this dissertation are a major step towards real-world implementation.</p>
|
32 |
An Evaluation of Monitoring and Preservation Techniques for the Main Cables of the Anthony Wayne BridgeLayton, Kyle William January 2013 (has links)
No description available.
|
33 |
An Evaluation of Corrosion Sensors for the Monitoring of the Main Cables of the Anthony Wayne BridgeColony, Charles W., Colony January 2016 (has links)
No description available.
|
34 |
Development and Validation of a Minichannel Evaporator Model under DehumidificationHassan, Abdelrahman Hussein Abdelhalim 07 October 2016 (has links)
[EN] In the first part of the current thesis, two fundamental numerical models (Fin2D-W and Fin1D-MB) for analyzing the air-side performance of minichannel evaporators were developed and verified. The Fin2D-W model applies a comprehensive two-dimensional scheme to discretize the evaporator. On the other hand, the Fin1D-MB model is based on the one-dimensional fin theory in conjunction with the moving boundaries technique along the fin height. The first objective of the two presented models is to identify and quantify the most influential phenomena encountered in the process of cooling and dehumidification. The second objective is to study the impact of the classical modeling assumptions on the air-side performance of minichannel evaporators. Different comparative studies between the traditional Effectiveness-NTU approach and the proposed numerical models were implemented to achieve the mentioned goals. The results revealed that the modeling assumptions which have the most significant impacts on the heat and mass transfer rates are: the uniform air properties along the fin height, adiabatic-fin-tip at half the height, and negligence of partial dehumidification scenarios. These widely used assumptions resulted in substantial deviations in total heat transfer rate, up to 52%, between the Effectiveness-NTU approach and Fin2D-W model.
In the second part of the thesis, the Fin1D-MB model was integrated into the IMST-ART® simulation tool to evaluate the global performance of minichannel evaporators (air- and refrigerant-side). The Fin1D-MB model was selected because of its simplicity, calculation speed, and reasonable solution accuracy relative to the Fin2D-W model. The validation of the complete Fin1D-MB model was conducted against many experimental data and numerical models available in the literature. The validation process was achieved for different heat exchanger geometries, refrigerants, and operating conditions. The results showed that for the R134a minichannel evaporators studied, the Fin1D-MB model successfully predicted the Inlet refrigerant and outlet air temperatures, cooling capacity, and refrigerant-side pressure drop within error bands of ±0.5 ºC, ±5%, and ±20%, respectively. For the CO2 (R744) minichannel evaporator studied, the presented model estimated the cooling capacity and outlet air temperature within error bands of ±10% and ±1.0 ºC, respectively. Regarding the CO2 pressure drop, the Fin1D-MB model generally underpredicted the pressure drop values compared to the experimental data, with a maximum deviation of 11 kPa. / [ES] En la primera parte de la tesis actual, dos modelos numéricos fundamentales (Fin2D-W y Fin1D-MB) para analizar el lado del aire de los evaporadores de minicanales se han desarrollado y verificado. El modelo Fin2D-W aplica un esquema detallado de dos dimensiones para discretizar el evaporador mientras que el modelo Fin1D-MB se basa en la teoría de la aleta unidimensional junto con la técnica de fronteras móviles para el lado del aire. El primer objetivo de los dos modelos presentados es identificar y cuantificar los fenómenos más influyentes encontrados en el proceso de enfriamiento y deshumidificación. El segundo objetivo es estudiar el impacto de las hipótesis comúnmente usadas en el modelado de la transmisión de calor del aire de los evaporadores de minicanales. Se implementaron diferentes estudios comparativos entre el enfoque tradicional Effectiveness-NTU y los modelos numéricos propuestos para alcanzar los objetivos mencionados. Los resultados muestran que las hipótesis que provocan una mayor desviación con respecto a la solución detallada en la transferencia de calor y masa son: propiedades de aire uniforme a lo largo de la altura de la aleta, extremo adiabático de aleta a mitad de su longitud, y no contemplar el supuesto de deshumidificación parcial en la aleta. Estas hipótesis ampliamente utilizadas han resultado en errores importantes en la transferencia de calor total, hasta un 52%, entre el enfoque Effectiveness-NTU y el modelo Fin2D-W.
En la segunda parte de la tesis, el modelo Fin1D-MB se integró en la herramienta de simulación IMST-ART® para evaluar el rendimiento global de los evaporadores de minicanales (en el lado del aire y del refrigerante). El modelo Fin1D-MB se seleccionó gracias a su simplicidad, velocidad de cálculo, y solución de una precisión razonable relativa al modelo Fin2D-W. Se realizó una validación del modelo completo Fin1D-MB con la ayuda de datos experimentales y modelos numéricos ya disponibles en la literatura. El modelo se ha validado para diferentes geometrías de intercambiadores de calor, refrigerantes y condiciones de funcionamiento. Los resultados han mostrado que para los evaporadores de minicanales funcionando con el refrigerante R134a, el modelo Fin1D-MB predice de manera correcta las temperaturas de entrada del refrigerante y de salida del aire, la capacidad de enfriamiento, y la caída de presión del lado de refrigerante dentro de las bandas de error de ±0.5 ºC, ±5%, y ±20%, respectivamente. Para el evaporador de minicanales con CO2 (R744) estudiado, el modelo estima la capacidad de refrigeración y la temperatura de salida del aire dentro de las bandas de error de ±10% y ±1.0 ºC, respectivamente. En cuanto a la caída de presión de CO2, el modelo Fin1D-MB generalmente predice a la baja los valores de la caída de presión en comparación con los datos experimentales, con una desviación máxima de 11 kPa. / [CA] A la primera part de la tesi actual, dos models numèrics fonamentals (Fin2D-W i Fin1D-MB) per analitzar el costat de l'aire dels evaporadors de minicanals s'han desenvolupat i verificat. Al model Fin2D-W s'aplica un esquema detallat de dues dimensions per discretitzar l'evaporador mentre que al model Fin1D-MB es basa en la teoria d'aleta unidimensional juntament amb la tècnica de frontera mòbil per al costat de l'aire. El primer objectiu dels dos models presentats és identificar i quantificar els fenòmens més influents trobats en el procés de refredament i deshumidificació. El segon objectiu és estudiar l'impacte de les hipòtesis comunament utilitzades en el modelatge de la transmissió de calor de l'aire dels evaporadors de minicanals. Es van implementar diferents estudis comparatius entre l'enfocament tradicional Effectiveness-NTU i els models numèrics proposats per assolir els objectius esmentats. Els resultats mostren que les hipòtesis que provoquen una major desviació respecte a la solució detallada a la transferència de calor i massa són: propietats d'aire uniforme al llarg de l'altura de l'aleta, extrem adiabàtic d'aleta a la meitat de la seua longitud, i no contemplar el supòsit de deshumidificació parcial en l'aleta. Aquestes hipòtesis àmpliament utilitzades donen errors importants en la transferència de calor total, fins a un 52%, entre l'enfocament Effectiveness-NTU i el model Fin2D-W.
A la segona part de la tesi, el model Fin1D-MB es va integrar en l'eina de simulació IMST-ART® per avaluar el rendiment global dels evaporadors de minicanals (al costat de l'aire i del refrigerant). El model Fin1D-MB es va seleccionar gràcies a la seva simplicitat, velocitat de càlcul, i solució d'una precisió raonable relativa al model Fin2D-W. Es va realitzar una validació del model complet Fin1D-MB amb l'ajuda de dades experimentals i models numèrics ja disponibles a la literatura. El model s'ha validat per a diferents geometries d'intercanviadors de calor, refrigerants i condicions de funcionament. Els resultats mostren que per als evaporadors de minicanals funcionant amb el refrigerant R134a, el model Fin1D-MB prediu de manera correcta les temperatures d'entrada del refrigerant i de sortida de l'aire, la capacitat de refreda-ment, i la caiguda de pressió del costat de refrigerant dins de les bandes d'error de ±0.5 ºC, ±5%, i ±20%, respectivament. Per a l'evaporador de minicanals amb CO2 (R744) estudiat, el model estima la capacitat de refrigeració i la temperatura de sortida de l'aire dins de les bandes d'error de ±10% i ±1.0 ºC, respectivament. Pel que fa a la caiguda de pressió de CO2, el model Fin1D-MB generalment prediu a la baixa els valors de la caiguda de pressió en comparació amb les dades experimentals, amb una desviació màxima d'11 kPa. / Hassan, AHA. (2016). Development and Validation of a Minichannel Evaporator Model under Dehumidification [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/71357
|
35 |
Modelling, Simulation and Optimisation of Multistage Humidification and Dehumidification Desalination Plant Using Solar Energy. Performance Evaluation and Improvement of the Humidification-Dehumidification Desalination Process through Modelling, Simulation and Optimisation TechniquesKaunga, Damson L. January 2022 (has links)
Serious social and economic disruptions are unfolding worldwide over the finite water and energy resources; hence, securing fresh water supply and employing renewable energy sources will help avoid catastrophic conflicts, continue modern lifestyles, and circumvent global warming and pollution. For this reason, a new method known as Humidification-Dehumidification (HDH) desalination process has been developed to address the challenge of water shortage. The aim of this research was to build the detailed mechanistic models with the increased capability to predict more accurately as well as to simulate and optimise the Multistage Humidification-Dehumidification (MHDH) desalination plant which is powered by solar energy.
The poor prediction accuracy is major bottleneck for most of conventional models. Mechanistic models for HDH desalination process derived from non-linear mathematical equations offers a promising solution to overcome this challenge. This study proposes a mechanistic model which is formulated by combining the enthalpy equations with the models which govern the mass and heat transfer across a thin film that separates water and air phases within the humidifier and dehumidifier. The proposed model is validated by using the data which were obtained from the physical experiments. Moreover, an experimental rig was designed and fabricated to specifically generate the physical data.
From the experimental and mathematical analysis, it was observed that the Recovery Ratio (RR) attained was increasing as temperature of the feed water increased. The RR was also increasing with the increase of dehumidifier’s surface area while it decreased with an increase of the packing size. Moreover, through a sensitivity analysis the highly influential parameters to the process model were identified to better understand the energy-efficient design principles and operating strategies for the maximum performance of the system.
Finally, a two stages HDH hybrid system that uses solar and biomass as source of energy is proposed whereby, an optimisation problem is solved to achieve the optimum RR. A maximum of 2 stages were required for a system to operate optimally. / Commonwealth Scholarship Commission in the UK (CSC) under PhD Scholarships Plan for Low and Middle Income Countries
|
36 |
<b>Vacuum Membrane Dehumidification for Electronics and High-Efficiency Air Conditioning</b>Songhao Wu (18516672) 08 May 2024 (has links)
<p dir="ltr">Dehumidification is pivotal in contemporary society, especially for electronics and buildings. Electronic devices face operational risks due to moisture-related failures, with substantial economic impacts estimated between $0.5 and $5 billion annually from electrostatic discharge (ESD) alone. Around 20% of building electricity consumption is cooling-related, of which more than 50% is usually latent load (removing water in the air). Innovative water vapor-selective membranes offer a distinctive solution for managing latent loads, as the ideal energy requirement for separating water vapor with a membrane is much smaller than the energy required for condensing it out of the air. Vacuum membrane dehumidification (VMD) is a promising alternative dehumidification technology for its quick operation and excellent energy savings. It applies selective membranes that enable water vapor to pass but not air.</p><p dir="ltr">This work consists of investigating VMD systems in electronics and building dehumidification. Electronic devices, essential in modern society, face operational risks due to moisture-related failures, with substantial economic impacts estimated between $0.5 and $5 billion annually from electrostatic discharge (ESD) alone. Lack of relative humidity (RH) control is a leading cause of failure, with the critical RH threshold for clean electronic surfaces recognized at 60%. This study investigates Vacuum Membrane Dehumidification (VMD) as a novel dehumidification strategy, targeting the efficient control of RH within small electronic enclosures to mitigate moisture-induced failures. This work involves constructing a thermodynamic model for the VMD system, followed by the assembly of a physical prototype for empirical validation. The model integrates enclosure dimensions and membrane properties to simulate performance across various environmental conditions. Experimental validation of the model is conducted under controlled conditions to establish its accuracy. The results reveal that the VMD system achieves effective moisture removal with a Humidity Removal Fraction (HRF) of 30-65%, significantly influenced by the ambient RH and vacuum pressures. Energy optimization studies compare the VMD with conventional methods, illustrating superior performance in energy efficiency. The VMD system not only demonstrates its efficacy in RH management but also suggests a potential reduction in the operational energy requirements of electronic devices. This work establishes a foundation for membrane-based dehumidification technologies in electronic enclosure design, with broad applications across various sectors dependent on electronic systems.</p><p dir="ltr">The building dehumidification work is the first to integrate dual-module VMD with a residential vapor compression system, exploring recirculation air’s impact on energy consumption. Two membrane module designs (flat-sheet and hollow fiber membrane) are explored. A parametric study is conducted to assess the energy consumption of systems at different operation conditions. A practical way to size the membrane based on design conditions like AHRI 340/360 is introduced. Up to 17% of energy savings could be achieved in extremely humid weather conditions.</p>
|
37 |
Design Optimization of Functionalized Silica-Polymer Nanocomposite through Finite Element and Molecular Dynamics ModelingAlmahmoud, Omar H. M. 08 1900 (has links)
This dissertation focuses on studying membrane air dehumidification for a membrane moisture exchanger in a membrane heat pump system. The study has two parts: an optimization of membrane moisture exchanger for air dehumidification in the macroscale, and diffusion of water vapor in polymer nanocomposites membrane for humid air dehumidification in the nanoscale. In the first part of the research, the mass transport of water vapor molecules through hydrophilic silica nanochannel chains in hydrophobic polyurethane matrix was studied by simulations and experiments for different membrane moisture exchanger design configurations. The mass transport across the polymer nanocomposite membrane occurs with the diffusion of moist air water vapor molecules in the membrane moisture exchanger in a membrane heat pump air conditioning system for air dehumidification purposes. The hydrophobic polyurethane matrix containing the hydrophilic silica nanochannel chains membrane is responsible for transporting water vapor molecules from the feed side to the permeate side of the membrane without allowing air molecules to pass through.In the second part of the research, diffusion analysis of the polymer nanocomposite membrane were performed in the nanoscale for the polymer nanocomposite membrane. The diffusion phenomena through the polymer, the polymer nanocomposite without modifying the silica surfaces, and the polymer nanocomposite with two different silica modified surfaces were studied in order to obtain the highest water vapor removal through the membrane. Different membrane moisture exchanger configurations for optimal water vapor removal were compared to get the desired membrane moisture exchanger design using the finite element method (FEM) with the COMSOL Multiphysics software package. The prediction of mass transport through different membrane configurations can be done by obtaining the mass flux value for each configuration. An experimental setup of one membrane moisture exchanger design was introduced to verify the simulation results. Also, for different membrane structures, permeability was measured according to the ASTM E-96 method. The prediction of water vapor diffusion through the polymer nanocomposite was studied by molecular dynamics simulation with the MAPS 4.3 and LAMMPS software packages. As a new nanocomposite material used in air dehumidification application, water vapor diffusivity through Silica-Polyurethane nanocomposite membranes was measured by the random movement of water vapor molecules through the formed nanochannels in the nanocomposite. For the diffusivity value, the Einstein's relationship was employed for the movement of each single water vapor molecule during the simulation time for all suggested membranes. The results of the proposed research will contribute to enhancing the energy efficiency of air conditioning systems by choosing the membrane moisture exchanger configuration which maximizes water vapor removal while, at the same time, enhancing the silica surfaces with the desired surface modifier that will maximize diffusion through the membrane itself.
|
38 |
Vzduchotechnika bazénových hal / Airconditioning pool hallsBobrovský, Ondřej January 2018 (has links)
Diploma thesis is focused on problematics of ventilation of swimming pool halls. Thesis describes the design of air handling units for swimming pool halls and operation risks. It presents different variants of ventilation with mentioned advantages and disadvantages of individual technical solutions. A swimming pool air handling unit was measured in real conditions as a part of experimental solution. The goal of measuring was to analyze thermal efficiency of cross flow heat exchanger aswell as to monitor working modes and functions of unit. Based on informations gathered during experimental measuring, two different variants of ventilation were designed. Both designs are evaluated economically during extreme weather conditions and during the whole year.
|
39 |
Influence of atmospheric moisture on the corrosion of chloride-contaminated wrought ironLewis, Mark R. T. January 2009 (has links)
No description available.
|
40 |
Theoretical And Experimental Investigation Of A Humidification-dehumidification Desalination System Using Solar EnergySolmus, Ismail 01 September 2006 (has links) (PDF)
In this thesis, experimental and numerical studies have been carried out to investigate the performance of a solar desalination system working on humidification-dehumidification principle under the climatological conditions of Ankara, Turkey. The desalination unit was configured mainly by a double-pass flat plate solar air heater with two glass covers, pad humidifier, storage tank and dehumidifying exchanger. The system used in this work is based on the idea of closed water and open air cycles. A computer simulation program based on the mathematical model was developed by means of MATLAB software to study the effect of different environmental, design, and operational parameters on the desalination system productivity. In this simulation program, the fourth order Runge-Kutta method was used to solve the energy balance equations simultaneously and numerically. In order to compare the obtained theoretical results with experimental ones and validate of the developed mathematical model of the system, an experimental study has been carried out. For that, an experimental set-up was designed, constructed and tested at the solar house of the Mechanical Engineering Department of METU. In addition, the existing solar desalination system was integrated with an evacuated tubular solar water heater unit (closed water circulation) and performance of the system has been studied experimentally.
|
Page generated in 0.0775 seconds