631 |
Novel Immunogens Of Cellular Immunity Revealed Using In Vitro Human Cell-based ApproachSchanen, Brian 01 January 2012 (has links)
In the last 150 years, tremendous headway has been made in our understanding of the human immune system. Pioneers in the field such as Paul Ehrlich, Elie Metchnikoff, Louis Pasteur, Robert Koch and Walter Reed carried out seminal studies that established the groundwork for our understanding of humoral and cellular immunity in humans. However, this direct line of evidence into human immunology was diverted in the mid-20th century with the adoption of a model which allowed for investigators to use a reductionist-approach with the promise to resolve immunity at a molecular level. This revolutionary model was the scientific commercialization of various inbred strains of mice. It seems inconceivable how a four-legged nocturnal rodent managed to become the focus of billions of dollars of research to improve our understanding of human immunity. Nevertheless, this strange surrogate for human immunity did provide us with major conceptual advances in areas, such as identification of dendritic cell population heterogeneity, T cell help for B cell antibody production, MHC-restricted recognition of virusinfected cells, and even the discovery of cell types like NKT cells. However, these prior advances have now been prefaced with decades-worth of disappointing, non-translational findings. The best examples of such disappointments are in murine models of autoimmunity, cancer immunotherapy, and vaccinology where numerous studies have revealed promising outcomes in mice but were met with failure or limited success upon translation into humans. We do not look at this as a failure of the murine model; rather we consider it a call to arms to innovate in vitro surrogates to examine human immunity when otherwise bound by ethical limitation from working directly in humans. To overcome these challenges, we developed a system to interrogate novel immunogens that begins by generating human dendritic cells (DCs), a cell type necessary to mounting a protective immune response. DCs for research and clinical applications are typically derived from purified blood monocytes that are cultured in a cocktail of cytokines for a week or more. Because it has been iv suggested that these cytokine-derived DCs may be deficient in some important immunological functions and might not accurately represent antigen presenting cell (APC) populations found under normal conditions in vivo, there is an interest in developing methods that permit the derivation of DCs in a more physiologically relevant manner in vitro. Here, we describe a simple and reliable technique for generating large numbers of highly purified DCs that is based on a one-way migration of blood monocytes through a layer of human umbilical vein endothelial cells (HUVECs) that are cultured to confluency in the upper chamber of a Transwell device. The resultant APCs, harvested from the lower Transwell chamber, resemble other cultured DC populations in their expression of major histocompatibility (MHC) and costimulatory molecules, ability to phagocytose protein antigens and capacity to trigger primary antigen-specific T cell responses. This technique offers several advantages over the standard method of in vitro cytokine-driven DC development, including: (1) the rapidity of this approach, as DC differentiation occurs in only 2 days, (2) the differentiation process itself, which is more akin to the development of DCs under physiologic conditions and (3) the cost effectiveness of the system, since no monocyte pre-selection is required and DC development occurs in the absence of expensive recombinant cytokines. Taken together, this approach allows for the exploration of novel immunogens utilizing a physiologically representative population of APCs enriched from circulating blood. The outbreak of the swine-origin H1N1 influenza in the spring of 2009 took epidemiologists, immunologists, and vaccinologists by surprise and galvanized a massive worldwide effort to produce millions of vaccine doses to protect against this single virus strain. Of particular concern was the apparent lack of pre-existing antibody capable of eliciting cross-protective immunity against this novel virus, which fueled fears this strain would trigger a particularly far-reaching and lethal pandemic. Given that disease caused by the swine-origin virus was far less severe than expected, we hypothesized v cellular immunity to cross-conserved T cell epitopes might have played a significant role in protecting against the pandemic H1N1 in the absence of cross-reactive humoral immunity. We collaborated with bioinformaticians to develop an immunoinformatics approach to predict CD4+ T cell epitopes conserved between the 2008-2009 seasonal H1N1 vaccine strain and pandemic H1N1 (A/California/04/2009) hemagglutinin proteins that could act as novel immunogens and function as potential vaccine candidates or compliments to current vaccine formulations. We examined these peptides using T cells from human donors not exposed to the pandemic virus demonstrating that pre-existing CD4+ T cells can elicit cross-reactive effector responses against the pandemic H1N1 virus. As well, we showed the computational tools created by our collaborators were 80-90% accurate in predicting CD4+ T cell epitopes and their HLA-DRB1-dependent response profiles in donors that were chosen at random for HLA haplotype. Combined, these results confirm the power of coupling immunoinformatics to define broadly reactive CD4+ T cell epitopes with a highly sensitive in vitro model to verify these in silico predictions as a means to understand human cellular immunity, including cross-protective responses, and to define CD4+ T cell epitopes for potential vaccination efforts against future influenza viruses and other pathogens. It is thought that utilizing highly conserved peptides as novel immunogens of cellular immunity for future vaccination strategies may require an adjuvant for efficacy. However, the FDA has approved the use of only two adjuvant compounds (Alum or MPL®) which may not be compatible or offer effective immune enhancement in novel vaccine preparations, thereby soliciting the need for novel adjuvants. Nanoparticles have since been a topic of adjuvant potential. Nanoparticles harbor great potential because they possess unique physicochemical properties compared to their larger counter parts as a result of quantum-size effects and their inherent large surface area to volume ratio. These physicochemical properties govern how a nanoparticle will behave in its environment. However, vi researchers have only just begun to catalogue the biological effect these properties illicit. Moreover, little is known about the interaction between the immune system and NPs. However, in light of the recent development in new adjuvants that involves composites and coatings of polymers, lipids, ligands, TLR agonist, the ability of a simple metal oxide nanopowder to effectively induce or couple immunomodulation would provide researchers a basic alternative to costly and complex adjuvant development. Considering the evidence suggesting NPs can act as immunopotentiators, we questioned whether these materials can act not only as innate adjuvants, but as novel immunogens to cellular immunity. To accomplish this, we under took a set of studies to investigate any nanoparticle size-induced effects using TiO2, one of the most widely manufactured nanoparticles, as a model. We explored titanium dioxide synthesized into its three most commonly nanoarchitectures: anatase (7-10 nm), rutile (15-20 nm), and nanotube (10-15 nm diameters, 70-150 nm length) in comparison to a micron-sized formulation. We used the fully human autologous MIMIC® immunological construct has been utilized as a predictive, nonanimal alternative to diagnose nanoparticle immunogenicity. Cumulatively, treatment with titanium dioxide nanoparticles in the MIMIC® system led to elevated levels of proinflammatory cytokines and increased maturation and expression of costimulatory molecules on dendritic cells. Additionally, these treatments effectively primed activation and proliferation of naïve CD4+ T cells in comparison to dendritic cells treated with titanium dioxide microspheres, characteristic of an in vivo inflammatory response, providing evidence of a size induced difference between the nano-sized and micron-sized material, revealing novel immune cell recognition and activation by a crystalline nanomaterial in a size-dependent manner. Having identified nanomaterial size as a contributing feature of nanoparticle induced immunopotentiation, we became interested if additional physicochemical properties such as surface vii reactivity or catalytic behavior could also be immunostimulatory. Moreover, because we witnessed a stimulatory effect to dendritic cells following nanoparticle treatment, we were curious how these nanoparticle-touched dendritic cells would impact adaptive immunity. Since TiO2 acts as an oxidant we chose an antioxidant nanoparticle, CeO2, as a counterpart to explore how divergent nanoparticle surface reactivity impacts innate and adaptive immunity. We focused on the effect these nanoparticles had on human dendritic cells and TH cells as a strategy towards defining their impact to cellular immunity. Combined, we report that TiO2 nanoparticles potentiate DC maturation inducing the secretion of IL- 12p70 and IL-1B, while treatment with CeO2 nanoparticles induced IL-10, a hallmark of suppression. When delivered to T cells alone TiO2 nanoparticles induced stronger proliferation in comparison to CeO2 which also stimulated TReg differentiation. When co-cultured in allogeneic T cell assays, the materials directed alternate TH polarization whereby TiO2 drives largely a TH1 dominate response, whereas CeO2 drove a TH2 bias. Combined, we report a novel immunomodulatory capacity of nanomaterials with catalytic activity. While unintentional exposure to these nanomaterials could pose a serious health risk, development and targeted use of such immunomodulatory nanoparticles could provide researchers with new tools for novel adjuvant strategies or therapeutics.
|
632 |
Development of Dendritic Mesoporous Heterogeneous Catalysts for Efficient CO2 Hydrogenation to MethanolAlabsi, Mohnnad H. 08 1900 (has links)
In this research we investigated the generation of methanol and the utilization of CO2 using heterogeneous catalysts. Heterogeneous catalysts are frequently used in industry due to their multiple benefits, which include long-term thermal and mechanical stability, as well as reusability. Our research has demonstrated a variety of heterogeneous catalysts for sustainable methanol production and CO2 utilization, including the novel dendritic mesoporous metal oxides support. We have also designed and screened multiple active metals on the dendritic mesoporous metal oxide catalysts, modified active metal dispersion, and further reduced metal oxides to utilize silica-based catalysts, among other things. Comprehensive characterization of the final products was performed using N2 adsorption and desorption, XRD, HR-TEM, SEM, ICP-OES, XPS, H2-TPD, CO2-TPD, Raman spectroscopy, pulse-chemosorption and DRIFT, in order to determine the chemical and physical properties of the catalysts. The catalysts were found to have the following characteristics. We obtained a CO2 conversion of 25.5 % and a MeOH yield of 6.4 % after at least three cycles of usage in an avantium fixed bed reactor system with a PdCu/CZ-3 catalyst. Additionally, continuous methanol production with a higher yield (6.9 %) has been achieved using our PdZn/CZ-3 catalysts, and the best ultra-dispersed Pd nanoparticles over CZZ catalyst produces more than 12 % methanol yield with constant selectivity to methanol even after a lengthy catalytic test (more than 100 h), demonstrating their industrial viability. Additionally, our PdZn/CeTi-DMSN exhibits a high methanol production of up to 10% and better long-term stability with lower metal oxides content. The adsorption and activation of CO2 to react with the spilled over hydrogen to generate methanol has been researched for the CO2 hydrogenation and utilization reaction. Catalysts' redox, acidic, and basic characteristics all play a crucial part in this reaction and in the formation of the various products. With 2.0 percent Pd, the supported dendritic CeZrZn catalyst exhibits the highest catalytic performance (29.1% conversion and 40.6% MeOH selectivity). Comprehensive analysis revealed in this research not only identified effective catalysts with high activity for a variety of applications, but also established a link between catalytic performance and the material's nature. These discoveries may also aid the researcher in the near future in resolving global environmental problems.
|
633 |
Modulation of dendritic cell function and T cell immunity by bacterial lipopolysaccharidePapadopoulos, George 14 June 2019 (has links)
Several Gram-negative bacteria modify their outer most surface structure, lipopolysaccharide (LPS), to evade immune surveillance and survive within the host. Many of these changes occur within the lipid A domain, a region that is recognized by the innate immune system via Toll-like receptor-4 (TLR4). One such pathogen, Porphyromonas gingivalis, orchestrates chronic inflammatory disease by disrupting immune homeostasis. P. gingivalis initially synthesizes a penta-acylated lipid A that functions as a weak TLR4 agonist but displays tetra-acylated forms that are either immunologically silent or TLR4 antagonists. The impact of lipid A modifications on downstream signaling and antigen-specific immunity are unclear.
TLR4 signals from the plasma membrane through a MyD88-dependent pathway and intracellularly through a TRIF-dependent pathway. Here we show that expression of immunological silent or antagonistic lipid A enables P. gingivalis to evade TRIF-dependent signaling in dendritic cells (DCs). Evasion of TRIF signaling accelerated antigen degradation and impaired priming of pathogen-specific T cells. In contrast, a P. gingivalis strain expressing agonist lipid A potently activated TRIF signaling and delayed antigen degradation, thereby preserving peptides for optimal T cell activation. We propose that lipid A modifications control the endocytic activity of DCs and the efficiency at which microbe-specific T cells are primed.
We next investigated the impact of purified P. gingivalis LPS on innate signaling and antigen presentation. All P. gingivalis LPS species induced a program of DC maturation that allowed for constitutive antigen uptake and cross-presentation. This was independent of TLR4 agonist activity and required CD14, a protein that transports TLR4 to endosomes where TRIF signaling can occur. Agonist LPS induced signaling through both MyD88 and TRIF and elicited T cell priming. Antagonistic LPS potently accelerated CD14 endocytosis and induced TRIF-biased signaling leading to comparable degree of cross-priming. Immunologically silent LPS promoted CD14 endocytosis but failed to activate signaling and induced T cell tolerance. Collectively, our results demonstrate that modification of lipid A structure enables Gram-negative bacteria to direct the host immune system towards tolerance or immunity. We propose that these findings can be harnessed for therapeutic modulation of the immune system to treat a variety of immune-mediated diseases. / 2021-06-14T00:00:00Z
|
634 |
Histone Deacetylase 2 Knockdown Ameliorates Morphological Abnormalities of Dendritic Branches and Spines to Improve Synaptic Plasticity in an APP/PS1 Transgenic Mouse Model / APP/PS1トランスジェニックマウスにおいて、ヒストン脱アセチル化酵素2のノックダウンは樹状突起とスパインの形態異常及びシナプス可塑性を改善するNakatsuka, Daiki 26 September 2022 (has links)
京都大学 / 新制・論文博士 / 博士(医科学) / 乙第13503号 / 論医科博第9号 / 新制||医科||10(附属図書館) / (主査)教授 林 康紀, 教授 髙橋 良輔, 教授 井上 治久 / 学位規則第4条第2項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
635 |
Capacity of Human Immunodeficiency Virus Targeting Chimeric Antigen Receptor T Cells to Eliminate Follicular Dendritic Cells Bearing Human Immunodeficiency Virus Immune ComplexesOllerton, Matthew T 01 December 2017 (has links)
An important obstacle to a functional cure for HIV/AIDS is the persistence of viral reservoirs found throughout the body in various cells and tissues. Reservoirs can be latently infected cells, or in the case of follicular dendritic cells (FDC), non-infected cells that trap infectious virus on their surface through immune complexes (HIV-IC). Although several strategies have been employed to target and eliminate viral reservoirs, they are short-lived and ineffective. In an attempt to provide a long-term approach, chimeric antigen receptor T (CAR-T) cells were designed to eliminate native HIV on FDCs. Although effective at eliminating HIV-infected cells, and halting spreading infection, their ability to eliminate the viral reservoir found on (FDCs) remains unclear. We used a novel second-generation CAR-T cell expressing domains 1 and 2 of CD4 followed by the mannose binding lectin (MBL) to allow recognition of native HIV envelope (Env) to determine the capacity to respond to the viral reservoir found on FDCs. We employed a novel fluorescent lysis assay, the Carboxyfluorescein succinimidyl ester (CFSE) release assay, as well as flow cytometric based assays to detect functional CAR-T activation through IFN-γ production and CD107a (i.e., LAMP1) membrane accumulation to test cytolytic capacity and functional activation of CD4-MBL CAR-T cells, respectively. We demonstrated their efficacy at eliminating HIV-infected cells or cells expressing gp160. However, these CAR-T cells were unable to lyse cells bearing surface bound HIV-IC. We found that failed lysis was not a unique feature of a resistant target, but a limitation in the CAR-T recognition elements. CAR-T cells were inactive in the presence of free HIV or in the presence of concentrated, immobilized virus. Further experiments determined that in addition to gp120 recognition by the CAR-T, the adhesion molecule ICAM-1 was necessary for efficient CAR-T cell killing of HIV-infected cells. CAR-T cell activity and killing were inhibited in the presence of ICAM-1 blocking antibody. These results suggest that other factors, such as adhesion molecules, play a vital role in CAR-T responses to HIV-infected cells. In addition, our findings highlighted the necessity to consider all models of HIV reservoirs, including FDCs, when evaluating therapeutic efficacy.
|
636 |
Capacity of Human Immunodeficiency Virus Targeting Chimeric Antigen Receptor T Cells to Eliminate Follicular Dendritic Cells Bearing Human Immunodeficiency Virus Immune ComplexesOllerton, Matthew T 01 December 2017 (has links)
An important obstacle to a functional cure for HIV/AIDS is the persistence of viral reservoirs found throughout the body in various cells and tissues. Reservoirs can be latently infected cells, or in the case of follicular dendritic cells (FDC), non-infected cells that trap infectious virus on their surface through immune complexes (HIV-IC). Although several strategies have been employed to target and eliminate viral reservoirs, they are short-lived and ineffective. In an attempt to provide a long-term approach, chimeric antigen receptor T (CAR-T) cells were designed to eliminate native HIV on FDCs. Although effective at eliminating HIV-infected cells, and halting spreading infection, their ability to eliminate the viral reservoir found on (FDCs) remains unclear. We used a novel second-generation CAR-T cell expressing domains 1 and 2 of CD4 followed by the mannose binding lectin (MBL) to allow recognition of native HIV envelope (Env) to determine the capacity to respond to the viral reservoir found on FDCs. We employed a novel fluorescent lysis assay, the Carboxyfluorescein succinimidyl ester (CFSE) release assay, as well as flow cytometric based assays to detect functional CAR-T activation through IFN-γ production and CD107a (i.e., LAMP1) membrane accumulation to test cytolytic capacity and functional activation of CD4-MBL CAR-T cells, respectively. We demonstrated their efficacy at eliminating HIV-infected cells or cells expressing gp160. However, these CAR-T cells were unable to lyse cells bearing surface bound HIV-IC. We found that failed lysis was not a unique feature of a resistant target, but a limitation in the CAR-T recognition elements. CAR-T cells were inactive in the presence of free HIV or in the presence of concentrated, immobilized virus. Further experiments determined that in addition to gp120 recognition by the CAR-T, the adhesion molecule ICAM-1 was necessary for efficient CAR-T cell killing of HIV-infected cells. CAR-T cell activity and killing were inhibited in the presence of ICAM-1 blocking antibody. These results suggest that other factors, such as adhesion molecules, play a vital role in CAR-T responses to HIV-infected cells. In addition, our findings highlighted the necessity to consider all models of HIV reservoirs, including FDCs, when evaluating therapeutic efficacy.
|
637 |
Direct effects of milk oligosaccharides on the inflammatory response in relation to allergyZehra, Sehrish 21 November 2015 (has links)
Introduction: The incidence of food allergy has increased substantially in developed countries, with limited treatment and/or prevention options. Milk oligosaccharides have shown to modulate immune responses by serving as prebiotic substrates for the intestinal microbiota. However, some studies suggest that oligosaccharides may exert direct immunomodulatory effects, suggesting their therapeutic potential in preventing allergic diseases. We hypothesized that specific milk oligosaccharides including 6’sialyllactose, 2’fucosylactose, 3’sialyllactose and lacto-N-neotetraose may directly exert immunomodulatory effects on dendritic cells (DCs) and epithelial cells (ECs) by altering their phenotype and/or function in vitro.
Methods: The effects of milk oligosaccharides (MOs) on bone-marrow derived DCs and the T84 and MODE-K epithelial cell lines were studied via direct treatment, in vitro. The expression of immunomodulatory cytokines and maturation markers were assessed to measure the effect of MOs on DC phenotype. Pro- and anti-inflammatory cytokines as well as NFκB p65 activity were measured to assess the effect of MOs on DC and EC function. In addition, in vitro stimulation of CD23 with IgE-Antigen complexes were used to study the effects of MOs on ECs in relation to allergy. Lastly, inhibitory antibodies for Siglec-F and PPARγ were used to elucidate the mechanism used by specific MOs to exert their effects.
Results: Of the oligosaccharides studied, 6’siallylactose has direct immunomodulatory effects on DC phenotype and on DC and EC function at high concentrations. 6’sialyllactose increased DC expression of IL-10 and HO-1; it also increased CpG- and LPS- induced IL-10 release and decreased IL-12p70 release. Blocking the PPARγ receptor with GW9662 resulted in attenuation of this latter effect on IL-12p70 release. 6’sialyllactose reduced TNF-α induced IL-8 to a small but statistically significant extent and mKC to a great extent in T84 and MODE-K cells, respectively. In addition, 6’sialyllactose reduced IgE-Antigen stimulated release of IL-8 and CCL20, as well as NFκB p65 activity. Pre-treatment of cells with GW9662 resulted in attenuation of the effect of 6’SL on IL-8 release and p65 activation. In addition, 2’fucosylactose reduced CCL20 release and NFκB activity substantially, but these effects were not exerted via PPARγ.
Conclusion: Some oligosaccharides are able to directly modulate the inflammatory response in DCs and ECs, via pathways involving PPARγ activation and/or NFκB inhibition. / Thesis / Master of Science (MSc)
|
638 |
Combined Activity of Small-Molecule Inducers of Organelle Stress with TH1 Cytokines for Induction of Apoptosis in Breast Cancer CellsAnwar, Ariel Lynn 29 November 2022 (has links)
No description available.
|
639 |
Characterization of late embryonic B cell stages in chicken bursa of FabriciusFelfoldi, Balazs 02 May 2009 (has links)
B cell development in chicken takes place in a specific primary lymphoid organ, the bursa of Fabricius. The bursa is considered to provide a microenvironment that promotes B lymphocyte survival and maturation. The most important maturation step in the bursa is the immunoglobulin (Ig) gene conversion, a process that is responsible for immunoglobulin repertoire in avian species. The Ig-gene conversion is strictly regulated, and only progenitors that are able to initiate the process will develop into fully functional B lymphocytes. In this study the late embryonic B lymphocyte stages are investigated, the bursal stem cell stage and the onset of Ig-gene conversion stage. Previous studies identified functional and phenotypic differences between the two stages, showing high rate of proliferation at both, but a significant increase in apoptotic activity at the onset of gene conversion stage. The molecular basis behind the initiation of Ig-gene conversion is not well understood. Here two approaches are presented to provide information on the B lymphocyte developmental process. In chapter II proteomic analysis of the two cell stages was performed. The proteins were sorted into functional groups and signal transductions pathways were identified that are associated with proliferation, differentiation, cell adhesion and apoptosis. The project identified differences in protein profiles that might explain the changes in B lymphocyte physiology and bursal microenvironment at the initiation of Ig-gene conversion. In chapter III the antigen recognized by a bursal secretory dendritic cell specific monoclonal antibody, GIIF3 was identified and cloned. The antigen was shown to be expressed by bursal secretory dendritic cells only during the late embryonic period. The antigen was identified as smooth muscle gamma actin. Futher work will investigate what role the gene plays in dendritic cell funtion.
|
640 |
MODULATION OF NAIVE CD4+ T CELL ACTIVATION AND DENDRITIC CELL FUNCTION IN THE LUNGS DURING PULMONARY MYCOBACTERIAL INFECTIONAnis, Mursalin M. 18 July 2007 (has links)
No description available.
|
Page generated in 0.0494 seconds