1 |
An Efficient Approach for Dengue Mitigation: A Computational FrameworkDinayadura, Nirosha 05 1900 (has links)
Dengue mitigation is a major research area among scientist who are working towards an effective management of the dengue epidemic. An effective dengue mitigation requires several other important components. These components include an accurate epidemic modeling, an efficient epidemic prediction, and an efficient resource allocation for controlling of the spread of the dengue disease. Past studies assumed homogeneous response pattern of the dengue epidemic to climate conditions throughout the regions. The dengue epidemic is climate dependent and also it is geographically dependent. A global model is not sufficient to capture the local variations of the epidemic. We propose a novel method of epidemic modeling considering local variation and that uses micro ensemble of regressors for each region. There are three regressors that are used in the construction of the ensemble. These are support vector regression, ordinary least square regression, and a k-nearest neighbor regression. The best performing regressors get selected into the ensemble. The proposed ensemble determines the risk of dengue epidemic in each region in advance. The risk is then used in risk-based resource allocation. The proposing resource allocation is built based on the genetic algorithm. The algorithm exploits the genetic algorithm with major modifications to its main components, mutation and crossover. The proposed resource allocation converges faster than the standard genetic algorithm and also produces a better allocation compared to the standard algorithm.
|
2 |
Monitoring Dengue Outbreaks Using Online DataChartree, Jedsada 05 1900 (has links)
Internet technology has affected humans' lives in many disciplines. The search engine is one of the most important Internet tools in that it allows people to search for what they want. Search queries entered in a web search engine can be used to predict dengue incidence. This vector borne disease causes severe illness and kills a large number of people every year. This dissertation utilizes the capabilities of search queries related to dengue and climate to forecast the number of dengue cases. Several machine learning techniques are applied for data analysis, including Multiple Linear Regression, Artificial Neural Networks, and the Seasonal Autoregressive Integrated Moving Average. Predictive models produced from these machine learning methods are measured for their performance to find which technique generates the best model for dengue prediction. The results of experiments presented in this dissertation indicate that search query data related to dengue and climate can be used to forecast the number of dengue cases. The performance measurement of predictive models shows that Artificial Neural Networks outperform the others. These results will help public health officials in planning to deal with the outbreaks.
|
Page generated in 0.0823 seconds