1 |
Magnetic field in laser plasmas : non-local electron transport and reconnection / Champ magnétique dans les plasmas laser : transport électronique non-local et reconnexionRiquier, Raphaël 28 January 2016 (has links)
Dans le cadre de la fusion par confinement inertiel, une capsule contenant le combustible de deutérium-tritium est implosée soit par irradiation laser (attaque directe, interaction laser – cible de numéro atomique faible), soit par un rayonnement de corps noir émis par une cavité convertissant le rayonnement laser (attaque indirecte, interaction laser – cible de numéro atomique élevé).Dans les deux cas, une modélisation correcte du transport électronique est cruciale pour avoir des simulations hydro-radiatives prédictives. Cependant, il a été montré très tôt que les hypothèses d'un mécanisme de transport linéaire ne sont pas applicables dans le cadre de l'irradiation d'une cible solide par un laser de puissance (I~10^14 W/cm²). Cela est dû d'une part à des gradients de température très importants (effets cinétiques dits « non-locaux ») ainsi qu'à la présence d'un champ magnétique auto-généré par effet thermo-électrique. Enfin, le flux de chaleur et le champ magnétique sont fortement couplés au travers de deux mécanismes : le transport du champ magnétique par le flux de chaleur (effet Nernst) et la rotation et inhibition du flux de chaleur par la magnétisation du plasma (effet Righi-Leduc).Dans le présent manuscrit, nous commencerons par exposer les différents modèles de transport électronique, et en particulier le modèle non-local avec champ magnétique, implémenté dans le code hydro-radiatif FCI2. Par la suite, nous chercherons à valider ce modèle par des comparaisons avec un code cinétique, puis avec une expérience lors de laquelle le champ magnétique a été mesuré par radiographie proton. Cela fait, nous utiliserons le code FCI2 pour expliquer la source et le transport du champ, ainsi que son effet sur l'interaction.Enfin, nous étudierons la reconnexion du champ magnétique, lors de l'irradiation d'une cible par deux faisceaux lasers. / In the framework of the inertial confinement fusion, a pellet filled with the deuterium-tritium fuel is imploded, either through laser irradiation (direct drive, laser – low atomic number target interaction) or by the black body radiation from a cavity converting the laser radiation (indirect drive, laser – high atomic number target interaction).In both cases, a correct modeling of the electron transport is of first importance in order to have predictive hydro-radiative simulations. Nonetheless, it has been shown early on that the hypothesis of the linear transport are not valid in the framework of a solid target irradiated by a high power laser (I~1014 W/cm²). This is due in part to very steep temperature gradients (kinetic effects, so-called « non-local ») and because of a magnetic field self-generated through the thermo-electric effect. Finally, the heat flux and the magnetic field are strongly coupled through two mecanisms: the advection of the field with the heat flux (Nernst effect) and the rotation and inhibition of the heat flux by the plasma's magnetization (Righi-Leduc effect).In this manuscript, we will first present the various electron transport models, particularly the non-local with magnetic field model included in the hydro-radiative code FCI2. Following, in order to validate this model, we will compare it first against a kinetic code, and then with an experiment during which the magnetic field has been probed through proton radiography. Once the model validated, we will use FCI2 simulations to explain the source and transport of the field, as well as its effect on the interaction.Finally, the reconnection of the magnetic field, during the irradiation of a solid target by two laser beams, will be studied.
|
2 |
Feasibility of Nuclear Plasma Interaction studies with the Activation TechniqueNogwanya, Thembalethu January 2018 (has links)
>Magister Scientiae - MSc / Electron-mediated nuclear plasma interactions (NPIs), such as Nuclear Excitation
by Electron Capture (NEEC) or Transition (NEET), can have a signi cant impact
on nuclear cross sections in High Energy Density Plasmas (HEDPs). HEDP
environments are found in nuclear weapons tests, National Ignition Facility (NIF)
shots and in the cosmos where nucleosynthesis takes place. This thesis explores
the impact of NPIs on highly excited nuclei. This impact is understood to be more
intense in highly-excited nuclei states in the quasi-contiuum which is populated
by nuclear reactions prior to their decay by spontaneous
-ray emission. Attempts
thus far have failed in measuring the NEEC process [1, 2], while NEET process
has been observed experimentally [3, 4]. Direct observation of NPIs is hindered
by the lack of a clear signature of their effect in HEDP environments. Hence this
should test a new signature [5] for NPIs for highly-excited nuclei by investigating
isomeric to ground state feeding from the isomeric state. An experiment was performed
using the reactions 197Au(13C, 12C)198Au and 197Au(13C, 12C2n)196Au at
Lawrence Berkeley National Laboratory in inverse kinematics with an 197Au beam
of 8.5 MeV/u energy. Several measurements were performed with different target
configurations. The activated foils were counted at the low-background counting
facility of Lawrence Livermore National Laboratory. From these data, the double
isomeric to ground state ratio (DIGS) were extracted with the assistance of the
decay equations that were included in the experiment. As the NPIs effects are
rather small the lines for analysis had to be chosen carefully so that the extracted
ratios would not contain significant errors. The measured DIGS ratios were then
compared with the result of the theoretical DIGS ratios. The results showed that
the calculated DIGS ratios deviated substantially from unity although this was
with large uncertainties. Because of the large errors obtained, the DIGS ratios
were found to be inconclusive as a signature for detecting the effects of NPIs such
as angular momentum distribution changes in HEDP environmen
|
3 |
Analyse des processus de dérive lors de la gravure profonde du silicium dans des plasmas SF6 et C4F8Fradet, Mathieu 08 1900 (has links)
L’objectif de ce mémoire de maîtrise est de développer des outils de diagnostics non-invasifs et de caractériser in-situ les dérives de procédé dans un réacteur industriel utilisé en production pour la gravure profonde du silicium par le procédé Bosch. Ce dernier repose sur l’alternance d’un plasma de SF6 pour la gravure isotrope du Si et d’un plasma de C4F8 pour la passivation des parois dans l’optique d’obtenir des tranchées profondes et étroites. Dans un premier temps, nous avons installé une sonde courant-tension sur la ligne de transmission du signal rf au porte-substrat pour l’étude de son impédance caractéristique et un spectromètre optique pour l’étude de l’émission optique du plasma. Nos travaux ont montré que l’évolution temporelle de l’impédance constitue un excellent moyen pour identifier des changements dans la dynamique du procédé, notamment une gravure complète de la photorésine. De plus, à partir des spectres d’émission, nous avons pu montrer que des produits carbonés sont libérés du substrat et des parois lors de l’alternance passivation/gravure et que ceux-ci modifient considérablement la concentration de fluor atomique dans le plasma.
Dans un second temps, nous avons développé un réacteur à « substrat-tournant » pour l’analyse in-situ des interactions plasma-parois dans le procédé Bosch. Nos travaux sur ce réacteur visaient à caractériser par spectrométrie de masse l’évolution temporelle des populations de neutres réactifs et d’ions positifs. Dans les conditions opératoires étudiées, le SF6 se dissocie à près de 45% alors que le degré de dissociation du C4F8 atteint 70%. Le SF6 est avant tout dissocié en F et SF3 et l’ion dominant est le SF3+ alors que le C4F8 est fragmenté en CF, CF3 et CF4 et nous mesurons plusieurs ions significatifs. Dans les deux cas, la chaîne de dissociation demeure loin d’être complète. Nous avons noté une désorption importante des parois de CF4 lors du passage du cycle de passivation au cycle de gravure. Un modèle d’interactions plasmas-parois est proposé pour expliquer cette observation. / The purpose of this master thesis is to develop non-invasive diagnostic tools for in-situ characterization of process drifts in an industrial reactor used in production for deep silicon etching by the Bosch process. This process alternates between a SF6 plasma for isotropic Si etching and a C4F8 plasma for sidewall passivation to achieve deep and narrow trenches. In this context, a current-voltage probe was installed on the rf transmission line to the substrate holder for impedance studies and an optical spectrometer for plasma optical emission spectroscopy. We have shown that the time evolution of the impedance represents an excellent tool for monitoring changes in the process dynamics, including the complete removal of the photoresist due to process drifts. In addition, based on emission spectroscopy, we have demonstrated that carbon products are released from the substrate and reactor walls during etching.
A « spinning-wall » reactor was also developed for in-situ analysis of plasma-wall interactions. The main objective of our work on this reactor was to characterize the time evolution of the population of reactive neutrals and positive ions by plasma sampling mass spectrometry. Over the range of experimental conditions investigated, the percent dissociation of SF6 was 45%, while the one of C4F8 was 70%. SF6 was mostly dissociated in F and SF3, with SF3+ as the dominant ion. C4F8 is essentially fragmented in CF, CF3 and CF4 with many significant ions. In both cases, the dissociation chain remained incomplete. An important desorption of CF4 from the reactor walls was observed when going from passivation to etching cycles. A plasma-wall interaction model was proposed to explain such observation.
|
Page generated in 0.0807 seconds