1 |
Toxicity of Chromium and Fluoranthene From Aqueous and Sediment Sources to Selected Freshwater FishGendusa, Tony C. 05 1900 (has links)
Research efforts in aquatic toxicology have historically centered on the chemical analyses and toxic effects of waters to aquatic organisms. More recently, sediment-source toxicity has been explored, with efforts concentrated on establishing sensitive and accurate methodologies. This study focused on the toxicity of trivalent chromium, hexavalent chromium, and fluoranthene to Pimephales promelas, Ictalurus punctatus, and Lepomis macrochirus. Test fish were exposed to both water-borne and sediment-source toxicants for 96 hours (h) and 30 days (d). A 96-h and 30-d LC50 (mg/L Cr, ug/L Fluoranthene) was determined for each fish species exposed to aqueous toxicants. In addition, 96-h and 30-d LC50s were determined for each fish species from sediment chromium concentrations (mg/kg) and sediment fluoranthene concentrations (ug/kg). Although lethality endpoints were used throughout this research, acute effects other than mortality were determined for Lepomis macrochirus exposed to hexavalent chromium. Lethal toxicity values (96-h and 30-d LC50 and their 95% confidence limits) for trivalent chromium could not be determined since trivalent chromium concentations above 6.0 mg/L could not be obtained at water pHs compatible with these fish species. Trivalent chromium addition to test waters at pHs compatible with fish survival resulted in a chromium precipitate that was not lethal to test fish. In contrast, fathead minnows, channel catfish, and bluegill sunfish exposed to hexavalent chromium in water and sediments experienced mortality. Fathead minnows exposed to fluoranthene in water for 96h demonstrated a maximum mortality of 69%, while 100% mortality was achieved with channel catfish in similar tests. Sediment tests with fluoranthene resulted in 100% mortality with both fathead minnows and channel catfish.
|
2 |
Farfield modeling of the Boynton Inlet plume using sulfur hexafluoride as tracerUnknown Date (has links)
The analysis and modeling of the coastal farfield behavior of inlet discharge plumes is the key to understanding the fate of pollutants discharged into the ocean. These plumes disperse in chaotic and unpredictable patterns. Theoretical models are based on the average conditions and calibrated to the results of tracer studies. Data and models for freshwater discharges in coastal ocean systems are limited because of the lack of adequate tracers. On February, 2007, a tracer study was conducted on the Boynton Inlet, Florida, using sulfur hexafluoride (SF6) tracer. The objective of this study is to provide methods of analysis for the sample data collected during the experiment. The detected tracer concentrated in a bolus that migrated north of the inlet at velocities lower than predicted by the current data. The plume was successfully modeled with a Gaussian plume model, with 90% of the SF6 predictions having less than 4.6 pptr error. / by Joaquin Pire-Schmidt. / Thesis (M.S.C.S.)--Florida Atlantic University, 2009. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2009. Mode of access: World Wide Web.
|
3 |
The Distribution and Dynamics of Heavy Metals in Lake SedimentsBlais, Jules, M. January 1995 (has links)
Note:
|
4 |
Trace metal contamination in forests of southern Quebec and pathway studies of airborne metal depositsLin, Zhi-Qing January 1996 (has links)
No description available.
|
5 |
Trace metal contamination in forests of southern Quebec and pathway studies of airborne metal depositsLin, Zhi-Qing January 1996 (has links)
Trace metal contamination of the air-soil-tree system was examined in southern Quebec, where acid deposition and tree dieback have been recorded in high elevation forests. Mn pollution was emphasized due to its large emission from gasoline combustion in Canada. Airborne Cu, Mn, V, and Zn showed higher concentrations than those reported for other remote locations. Significant fluctuation in Mn concentrations during the winter-spring season was explored by air mass back trajectory analysis. The study suggested that high Mn concentrations resulted from the atmospheric long-range transport from Canadian industrialized and metropolitan regions. Metal concentrations in podzolic topsoils were generally higher than their world-wide average values. Concentrations of trace metals in balsam fir (Abies balsamea (L.) Mill) needles were below their suggested potential phytotoxic levels, except for Mn, which also increased with elevation. The scanning of needles with micro-PIXE showed no significant correlation between metal accumulation and epistomatal distribution on foliar surfaces. / Pathways of trace metals deposited in the soil-tree system were elucidated through application of $ sp{54}$Mn and $ sp{65}$Zn on shoot, bark, and soil surfaces in growth-chamber experiments with balsam fir seedlings. Uptake and accumulation by seedlings 70 days after application on the shoot surface was about 25-30% of the remaining activities for $ sp{54}$Mn and $ sp{65}$Zn. Less than 1% of absorbed isotopes was translocated from the bark surface to other plant organs, whereas more than 50% of the radioisotopes absorbed at the shoot moved to the rest of the seedling. Acidic wetness facilitated the metal absorption through tree surfaces. Downward movement of the radioisotopes in podzolic soils was documented, and accumulation in seedlings by root uptake was 5% of the remaining activity for $ sp{54}$Mn and 3% for $ sp{65}$Zn 70 days after application. No appreciable elemental migration from internal tissues to epicuticular wax layers was found, and the leaching ratio was below 0.5 and 1.0% for $ sp{54}$Mn and $ sp{65}$Zn, respectively. This study helps to understand the links between atmospheric deposition and the elevated levels of Mn in trees, and potential effects of acid deposition on the bioaccumulation of toxic metal pollutants in high elevation forests in southern Quebec.
|
6 |
Application of the Tracking and Analysis Framework (TAF) to Assess the Effects of Acidic Deposition on Recreational Fishing in Maine LakesWarlimont, Petra January 2002 (has links) (PDF)
No description available.
|
7 |
Investigating the long-term influence of atmospheric acid deposition and forest disturbance on soil chemistry and cation nutrient supplies in a forested ecosystem of southern QuebecBélanger, Nicolas, 1971- January 2000 (has links)
No description available.
|
8 |
Patterns and processes of sediment transport following sediment-filled dam removal in gravel bed riversStewart, Gregory B. 04 May 2006 (has links)
Graduation date: 2006 / Dam removal is increasingly viewed as a river restoration tool because dams affect so many aspects of river hydrology, geomorphology, and ecology; but removal also has impacts. When a dam is removed, sediment accumulated over a dam’s lifetime may be transported downstream; and the timing, fate and consequences of this sediment remain some of the greatest unknowns associated with dam removal. In this thesis, I develop a conceptual model for erosion and deposition following removal of sediment-filled dams in mountain streams, and use field studies to document actual change. The data show that reservoir erosion in mountain rivers is likely to occur by knickpoint migration, with 85% of stored sediment being released during a single storm event in two field studies, at shear stresses less than that required for mobilization of the median surface particle size. Coarse sediment is predicted to deposit close to the dam with channel aggradation decreasing exponentially with increasing distance downstream, although some channel features are shown to have a greater propensity for aggradation than others. Field studies show that turbidity associated with dam removal and reservoir erosion may decrease hyporheic exchange, but gravel deposition (e.g., 470 m3 of gravel from Dinner Creek Dam) has the potential to more than offset that decrease, and increased hyporheic exchange is shown to reduce diurnal temperature change. Macroinvertebrate density and taxa richness did not respond to dam removal itself, but rather with time-lagged reservoir erosion. Following reservoir erosion, macroinvertebrate density recovered quickly, although longterm taxa community composition appears to be altered. On the Sandy River, field measurements of shear stress and patterns of sediment deposition following cold lahars were used as an analog to predict the fate of fine sediment, which is likely to deposit far from the dam. Results show that the Sandy River has little capacity for fine sediment storage in pools above RK 6.4 (~ 42 kilometers below Marmot Dam) at discharges associated with reservoir sediment releases. Taken as a whole, this paper illustrates a complex suite of process that may accompany removal of sediment-filled dams in mountain rivers.
|
9 |
Investigating the long-term influence of atmospheric acid deposition and forest disturbance on soil chemistry and cation nutrient supplies in a forested ecosystem of southern QuebecBélanger, Nicolas, 1971- January 2000 (has links)
The objective of this thesis was to validate the dynamic model SAFE (Soil Acidification in Forested Ecosystems) in a small deciduous watershed of southern Quebec. SAFE could then be used to: (1) identify which processes are governing acidification, and (2) assess the rates of acidification according to various forest conditions. / Soil and soil solution chemistry between unburned and burned zones following fire disturbance seventy-five years ago was examined within the watershed. Results showed two major, statistically significant, differences: (1) higher base status, and (2) lower soil solution N in the burned zone. High quality leaf litter of aspen and birch (burned zone) relative to that of sugar and red maple (unburned zone) has contributed to the enrichment of base cations in the forest floor. The enrichment of the forest floor did not however impoverish the B horizon as seen in other studies. Rather, fire enriched the soil in base cations and buffered the effect of forest regrowth in the B horizon. / The MAKEDEP model was used to reconstruct the time-series input files needed to run SAFE. In MAKEDEP, the availability of N determines tree growth which in turn, affects most of the processes involved in nutrient cycling. Regressions of measured deposition at the Hubbard Brook Experimental Forest and that of simulated deposition at the study site suggest MAKEDEP is suitable to model the deposition trends of all elements except Na. / SAFE was calibrated for the unburned and burned conditions at the study site. Fire disturbance and forest regrowth have produced different soil chemical composition within the zones as discussed above. SAFE was therefore validated at the study site as a function of its ability to reproduce soil chemistry under unburned and burned conditions. The simulated soil chemistry was in close agreement with the measured unburned soil conditions, but some processes would have to be clarified or accounted for with greater accurately, e.g., biological N fixation and N immobilization by myccorhizal fungi, to reproduce more accurately the measured burned soil chemistry. Simulated soil chemistry in the unburned zone reinforced nevertheless the conclusions of a few historical soil chemistry studies supporting the hypothesis that acid-sensitive forest sites of the United States underwent significant acidification during 1930--1980 during major input of acidity from the atmosphere. Model output suggests that cation nutrient deficiencies could occur in the long-term, but future Al phytotoxic responses are unlikely to occur due to a relatively high projected pH. (Abstract shortened by UMI.)
|
10 |
Changes in fluxes of dissolved organic carbon (DOC) from small catchments in central ScotlandWearing, Catherine Louise January 2008 (has links)
Concentrations of dissolved organic carbon (DOC) measured within water bodies have been increasing on a global scale over the last two decades. Changes in temperature and rainfall have been shown to increase the production and export of DOC from catchments with peat soils in the UK (Freeman et al., 2001). However it is not clear whether increases in DOC concentrations are caused by production increases induced by temperature changes or by a greater incidence of high flows induced by rainfall changes. Increases in both temperature and rainfall have been predicted in Scotland over the next few decades (Kerr et al., 1999) which may further increase current DOC concentrations and exports. The implications of this include both a decrease in water quality and an increase in mobility of metals in upland water bodies. The overall aim of the thesis is to determine if the relationship between dissolved organic carbon (DOC) concentrations and discharge has changed over a 20 year period in small stream catchments in Scotland, in order to better understand the role of hydrology, in driving changes in DOC concentration. To achieve this streams draining two coniferous forest sites and one moorland site were monitored intensively between June 2004 and February 2006. Analysis of the relationship between DOC and discharge, within the catchments, identified the importance of the amount of precipitation falling on the catchment, antecedent precipitation and season, on the concentration of DOC that was measured within the stream. Models were then developed using variables to represent these drivers in terms of both the production (seasonal sine values and 14 day average temperatures) and movement (log of discharge (log Q), days since previous storm event and rising or falling stage) of DOC. In the Ochil Hills catchment, the best predictive model, used 4 hour average discharge and 1 day average 30cm soil temperatures (R2= 0.88). In the Duchray and Elrig catchments, the best predictive models produced used discharge and seasonal sine values; the strength of the model was greater in the Elrig (R2= 0.80) than the Duchray (R2= 0.48) catchment. The strength of the regression models produced highlighted the importance of precipitation in the movement of DOC to the stream and temperature variables representing production in the surrounding catchment. To determine if dissolved organic carbon (DOC) concentrations had changed within the three study catchments, since previous research was conducted at the same sites in the early 1980s and 1990s (Grieve, 1984a; Grieve, 1994), then regression analysis conducted in the previous research was repeated, so changes in the DOC and discharge relationship could be identified. Analysis of the Ochil Hills regression equations identified higher log of discharge and lower temperature and seasonal sine values in the present study (2004-06), when compared to the previous study (1982-83). This suggests that more DOC is now available for movement from the soil, and that the difference between winter and summer DOC production has decreased, potentially because of increasing temperatures. This would explain the limited increase in DOC concentration within the Ochil Hills stream. In the Duchray and Elrig streams, a large increase in DOC was identified at all discharges when all the models produced were compared between the two sampling periods (1989-90 and 2004-06). The increasing trend in DOC concentrations is too large to have been produced by change in temperature alone and it is suggested that the measured reduction in acidic deposition has resulted in the increased DOC concentrations measured in the Duchray and Elrig. The results from this research have identified that concentrations of DOC have increased in Scottish streams over the last 20 years and that the increases in DOC have been induced, potentially by temperature changes in climate. However, changes in temperature are not the only driver of this change as the reduction in acidic deposition is potentially more important, specifically in areas with base poor geology such as the Duchray and Elrig catchments.
|
Page generated in 0.1247 seconds