51 |
Regras de associação aplicadas aos filtros de mensagens e canais de informação do projeto direto / Association rules applied to messages filters and information channel in the direto environmentFrighetto, Michele January 2003 (has links)
Neste trabalho é apresentado um breve estudo sobre o processo de descoberta de conhecimento em banco de dados, com enfoque na etapa de mineração de dados através de regras de associação. Propostas por Agrawal em 1993, num estudo chamado análise de cesta de mercado, as regras de associação representam que com um certo grau de suporte e confiança um conjunto de itens pode estar presente numa transação visto que outro conjunto está presente. A necessidade de análise semelhante às realizadas por Agrawal surgiu em outros campos e estas foram estendidas a outras aplicações. Neste, são apresentadas as principais variações sobre o tema regras de associação encontradas na literatura. É proposta a mineração de dados através de regras de associação sobre filtros de mensagens e canais de informação do software de catálogo, agenda e correio eletrônico Direto. Para as pesquisas são utilizadas três ferramentas: Intelligent Miner, CBA e Magnus Opus. Elas foram aplicadas sobre uma lista de discussão da Linguagem Java, pois o projeto Direto ainda não possui mensagens públicas. As ferramentas possuem características distintas: o Intelligent Miner permite a definição de hierarquias sobre os dados que serão minerados; o Magnus Opus trabalha com diversos filtros e com a definição de intervalos para o tratamento de campos numéricos; o CBA permite que sejam especificados suportes múltiplos para os itens. / This work presents a brief review about knowledge discovery in database having association rules as the data mining process. Association rules were proposed by Agrawal in 1993 in a basket data analysis. Association rules have been extended to other applications because there is a necessity for similar Agrawal’s analysis in different domains. Here are presented some variations proposed in the literature about association rules along with the main algorithms. This work proposes the use of association rules over message filters and information channels from the Direto, which is a catalog, schedule and e-mail software. Three data mining tools were used: Intelligent Miner, CBA and Magnus Opus. They were applied over a Java discussion list because Direto project does not have public messages. Each tool has distinct features: Intelligent Miner allows to define a hierarchy over the data that will be mined; Magnus Opus works with many filters over the data and permits to define ranges over numeric fields and CBA allows to specify multiple minimum support over the items.
|
52 |
Aplicação do processo de descoberta de conhecimento em dados do poder judiciário do estado do Rio Grande do Sul / Applying the Knowledge Discovery in Database (KDD) Process to Data of the Judiciary Power of Rio Grande do SulSchneider, Luís Felipe January 2003 (has links)
Para explorar as relações existentes entre os dados abriu-se espaço para a procura de conhecimento e informações úteis não conhecidas, a partir de grandes conjuntos de dados armazenados. A este campo deu-se o nome de Descoberta de Conhecimento em Base de Dados (DCBD), o qual foi formalizado em 1989. O DCBD é composto por um processo de etapas ou fases, de natureza iterativa e interativa. Este trabalho baseou-se na metodologia CRISP-DM . Independente da metodologia empregada, este processo tem uma fase que pode ser considerada o núcleo da DCBD, a “mineração de dados” (ou modelagem conforme CRISP-DM), a qual está associado o conceito “classe de tipo de problema”, bem como as técnicas e algoritmos que podem ser empregados em uma aplicação de DCBD. Destacaremos as classes associação e agrupamento, as técnicas associadas a estas classes, e os algoritmos Apriori e K-médias. Toda esta contextualização estará compreendida na ferramenta de mineração de dados escolhida, Weka (Waikato Environment for Knowledge Analysis). O plano de pesquisa está centrado em aplicar o processo de DCBD no Poder Judiciário no que se refere a sua atividade fim, julgamentos de processos, procurando por descobertas a partir da influência da classificação processual em relação à incidência de processos, ao tempo de tramitação, aos tipos de sentenças proferidas e a presença da audiência. Também, será explorada a procura por perfis de réus, nos processos criminais, segundo características como sexo, estado civil, grau de instrução, profissão e raça. O trabalho apresenta nos capítulos 2 e 3 o embasamento teórico de DCBC, detalhando a metodologia CRISP-DM. No capítulo 4 explora-se toda a aplicação realizada nos dados do Poder Judiciário e por fim, no capítulo 5, são apresentadas as conclusões. / With the purpose of exploring existing connections among data, a space has been created for the search of Knowledge an useful unknown information based on large sets of stored data. This field was dubbed Knowledge Discovery in Databases (KDD) and it was formalized in 1989. The KDD consists of a process made up of iterative and interactive stages or phases. This work was based on the CRISP-DM methodology. Regardless of the methodology used, this process features a phase that may be considered as the nucleus of KDD, the “data mining” (or modeling according to CRISP-DM) which is associated with the task, as well as the techniques and algorithms that may be employed in an application of KDD. What will be highlighted in this study is affinity grouping and clustering, techniques associated with these tasks and Apriori and K-means algorithms. All this contextualization will be embodied in the selected data mining tool, Weka (Waikato Environment for Knowledge Analysis). The research plan focuses on the application of the KDD process in the Judiciary Power regarding its related activity, court proceedings, seeking findings based on the influence of the procedural classification concerning the incidence of proceedings, the proceduring time, the kind of sentences pronounced and hearing attendance. Also, the search for defendants’ profiles in criminal proceedings such as sex, marital status, education background, professional and race. In chapters 2 and 3, the study presents the theoretical grounds of KDD, explaining the CRISP-DM methodology. Chapter 4 explores all the application preformed in the data of the Judiciary Power, and lastly, in Chapter conclusions are drawn
|
53 |
Aplicação do processo de descoberta de conhecimento em dados do poder judiciário do estado do Rio Grande do Sul / Applying the Knowledge Discovery in Database (KDD) Process to Data of the Judiciary Power of Rio Grande do SulSchneider, Luís Felipe January 2003 (has links)
Para explorar as relações existentes entre os dados abriu-se espaço para a procura de conhecimento e informações úteis não conhecidas, a partir de grandes conjuntos de dados armazenados. A este campo deu-se o nome de Descoberta de Conhecimento em Base de Dados (DCBD), o qual foi formalizado em 1989. O DCBD é composto por um processo de etapas ou fases, de natureza iterativa e interativa. Este trabalho baseou-se na metodologia CRISP-DM . Independente da metodologia empregada, este processo tem uma fase que pode ser considerada o núcleo da DCBD, a “mineração de dados” (ou modelagem conforme CRISP-DM), a qual está associado o conceito “classe de tipo de problema”, bem como as técnicas e algoritmos que podem ser empregados em uma aplicação de DCBD. Destacaremos as classes associação e agrupamento, as técnicas associadas a estas classes, e os algoritmos Apriori e K-médias. Toda esta contextualização estará compreendida na ferramenta de mineração de dados escolhida, Weka (Waikato Environment for Knowledge Analysis). O plano de pesquisa está centrado em aplicar o processo de DCBD no Poder Judiciário no que se refere a sua atividade fim, julgamentos de processos, procurando por descobertas a partir da influência da classificação processual em relação à incidência de processos, ao tempo de tramitação, aos tipos de sentenças proferidas e a presença da audiência. Também, será explorada a procura por perfis de réus, nos processos criminais, segundo características como sexo, estado civil, grau de instrução, profissão e raça. O trabalho apresenta nos capítulos 2 e 3 o embasamento teórico de DCBC, detalhando a metodologia CRISP-DM. No capítulo 4 explora-se toda a aplicação realizada nos dados do Poder Judiciário e por fim, no capítulo 5, são apresentadas as conclusões. / With the purpose of exploring existing connections among data, a space has been created for the search of Knowledge an useful unknown information based on large sets of stored data. This field was dubbed Knowledge Discovery in Databases (KDD) and it was formalized in 1989. The KDD consists of a process made up of iterative and interactive stages or phases. This work was based on the CRISP-DM methodology. Regardless of the methodology used, this process features a phase that may be considered as the nucleus of KDD, the “data mining” (or modeling according to CRISP-DM) which is associated with the task, as well as the techniques and algorithms that may be employed in an application of KDD. What will be highlighted in this study is affinity grouping and clustering, techniques associated with these tasks and Apriori and K-means algorithms. All this contextualization will be embodied in the selected data mining tool, Weka (Waikato Environment for Knowledge Analysis). The research plan focuses on the application of the KDD process in the Judiciary Power regarding its related activity, court proceedings, seeking findings based on the influence of the procedural classification concerning the incidence of proceedings, the proceduring time, the kind of sentences pronounced and hearing attendance. Also, the search for defendants’ profiles in criminal proceedings such as sex, marital status, education background, professional and race. In chapters 2 and 3, the study presents the theoretical grounds of KDD, explaining the CRISP-DM methodology. Chapter 4 explores all the application preformed in the data of the Judiciary Power, and lastly, in Chapter conclusions are drawn
|
54 |
Regras de associação aplicadas aos filtros de mensagens e canais de informação do projeto direto / Association rules applied to messages filters and information channel in the direto environmentFrighetto, Michele January 2003 (has links)
Neste trabalho é apresentado um breve estudo sobre o processo de descoberta de conhecimento em banco de dados, com enfoque na etapa de mineração de dados através de regras de associação. Propostas por Agrawal em 1993, num estudo chamado análise de cesta de mercado, as regras de associação representam que com um certo grau de suporte e confiança um conjunto de itens pode estar presente numa transação visto que outro conjunto está presente. A necessidade de análise semelhante às realizadas por Agrawal surgiu em outros campos e estas foram estendidas a outras aplicações. Neste, são apresentadas as principais variações sobre o tema regras de associação encontradas na literatura. É proposta a mineração de dados através de regras de associação sobre filtros de mensagens e canais de informação do software de catálogo, agenda e correio eletrônico Direto. Para as pesquisas são utilizadas três ferramentas: Intelligent Miner, CBA e Magnus Opus. Elas foram aplicadas sobre uma lista de discussão da Linguagem Java, pois o projeto Direto ainda não possui mensagens públicas. As ferramentas possuem características distintas: o Intelligent Miner permite a definição de hierarquias sobre os dados que serão minerados; o Magnus Opus trabalha com diversos filtros e com a definição de intervalos para o tratamento de campos numéricos; o CBA permite que sejam especificados suportes múltiplos para os itens. / This work presents a brief review about knowledge discovery in database having association rules as the data mining process. Association rules were proposed by Agrawal in 1993 in a basket data analysis. Association rules have been extended to other applications because there is a necessity for similar Agrawal’s analysis in different domains. Here are presented some variations proposed in the literature about association rules along with the main algorithms. This work proposes the use of association rules over message filters and information channels from the Direto, which is a catalog, schedule and e-mail software. Three data mining tools were used: Intelligent Miner, CBA and Magnus Opus. They were applied over a Java discussion list because Direto project does not have public messages. Each tool has distinct features: Intelligent Miner allows to define a hierarchy over the data that will be mined; Magnus Opus works with many filters over the data and permits to define ranges over numeric fields and CBA allows to specify multiple minimum support over the items.
|
Page generated in 0.0934 seconds