Spelling suggestions: "subject:"design off experiments"" "subject:"design oof experiments""
441 |
Physico-Chemical Processes during Reactive Paper Sizing with Alkenyl Succinic Anhydride (ASA)Porkert, Sebastian 09 December 2016 (has links)
Sizing (hydrophobization) is one of the most important process steps within the added-value chain of about 1/3rd of the worldwide produced paper & board products. Even though sizing with so-called reactive sizing agents, such as alkenyl succinic anhydride (ASA) was implemented in the paper industry decades ago, there is no total clarity yet about the detailed chemical and physical mechanisms that lead to their performance. Previous research was carried out on the role of different factors influencing the sizing performance, such as bonding between ASA and cellulose, ASA hydrolysis, size revision as well as the most important interactions with stock components, process parameters and additives during the paper making process. However, it was not yet possible to develop a holistic model for the explanation of the sizing performance given in real life application. This thesis describes a novel physico-chemical approach to this problem by including results from previous research and combining these with a wide field of own basic research and a newly developed method that allows tracing back the actual localization of ASA within the sheet structure.
The carried out measurements and trial sets for the basic field of research served to evaluate the stock and process parameters that most dominantly influence the sizing performance of ASA. Interactions with additives other than retention aids were not taken into account. The results show that parameters, such as the content of secondary fibers, the degree of refining, the water hardness as well as the suspension conductivity, are of highest significance. The sample sets of the trials with the major impacting parameters were additionally analyzed by a newly developed localization method in order to better understand the main influencing factors.
This method is based on optical localization of ASA within the sheet structure by confocal white light microscopy. In order to fulfill the requirements at magnification rates of factor 100 optical zoom, it was necessary to improve the contrast between ASA and cellulose. Therefore, ASA was pretreated with an inert red diazo dye, which does not have any impact on neither the sizing nor the handling properties of ASA. Laboratory hand sheets that were sized with dyed ASA, were analyzed by means of their sizing performance in correlation to measurable ASA agglomerations in the sheet structure. The sizing performance was measured by ultrasonic penetration analysis. The agglomeration behavior of ASA was analyzed automatically by multiple random imaging of a sample area of approx. 8650 µm² with a minimum resolution for particles of 500 nm in size. The gained results were interpreted by full factorial design of experiments (DOE). The trials were carried out with ASA dosages between 0% and 0.8% on laboratory hand sheets, made of 80% bleached eucalyptus short fiber kraft pulp and 20% northern bleached softwood kraft pulp, beaten to SR° 30, produced with a RDA sheet former at a base weight of 100 g/m² oven dry.
The results show that there is a defined correlation between the ASA dosage, the sizing performance and the number and area of ASA agglomerates to be found in the sheet structure. It was also possible to show that the agglomeration behavior is highly influenced by external factors like furnish composition and process parameters. This enables a new approach to the explanation of sizing performance, by making it possible to not only examine the performance of the sizing agent, but to closely look at the predominant position where it is located in the sheet structure. These results lead to the explanation that the phenomenon of sizing is by far not a pure chemical process but rather a more physical one. Based on the gained findings it was possible so far to optimize the ASA sizing process in industrial-scale by means of ~ 50% less ASA consumption at a steady degree of sizing and improved physical sheet properties.:Acknowledgment I
Abstract III
Table of Content V
List of Illustrations XI
List of Tables XVI
List of Formulas XVII
List of Abbreviations XVIII
1 Introduction and Problem Description 1
1.1 Initial Situation 1
1.2 Objective 2
2 Theoretical Approach 3
2.1 The Modern Paper & Board Industry on the Example of Germany 3
2.1.1 Raw Materials for the Production of Paper & Board 5
2.2 The Sizing of Paper & Board 8
2.2.1 Introduction to Paper & Board Sizing 8
2.2.2 The Definition of Paper & Board Sizing 10
2.2.3 The Global Markets for Sized Paper & Board Products and Sizing Agents 11
2.2.4 Physical and Chemical Background to the Mechanisms of Surface-Wetting and Penetration 13
2.2.4.1 Surface Wetting 14
2.2.4.2 Liquid Penetration 15
2.2.5 Surface and Internal Sizing 17
2.2.6 Sizing Agents 18
2.2.6.1 Alkenyl Succinic Anhydride (ASA) 19
2.2.6.2 Rosin Sizes 19
2.2.6.3 Alkylketen Dimer (AKD) 23
2.2.6.4 Polymeric Sizing Agents (PSA) 26
2.2.7 Determination of the Sizing Degree (Performance Analysis) 28
2.2.7.1 Cobb Water Absorption 29
2.2.7.2 Contact Angle Measurement 30
2.2.7.3 Penetration Dynamics Analysis 31
2.2.7.4 Further Qualitative Analysis Methods 33
2.2.7.4.1 Ink Stroke 33
2.2.7.4.2 Immersion Test 33
2.2.7.4.3 Floating Test 34
2.2.7.4.4 Hercules Sizing Tester (HST) 34
2.2.8 Sizing Agent Detection (Qualitative Analysis) and Determination of the Sizing Agent Content (Quantitative Analysis) 35
2.2.8.1 Destructive Methods 35
2.2.8.2 Non Destructive Methods 36
2.3 Alkenyl Succinic Anhydride (ASA) 36
2.3.1.1 Chemical Composition and Production of ASA 37
2.3.1.2 Mechanistic Reaction Models 39
2.3.1.3 ASA Application 42
2.3.1.3.1 Emulsification 42
2.3.1.3.2 Dosing 44
2.3.1.4 Mechanistic Steps of ASA Sizing 46
2.3.2 Physico-Chemical Aspects during ASA Sizing 48
2.3.2.1 Reaction Plausibility 48
2.3.2.1.1 Educt-Product Balance / Kinetics 48
2.3.2.1.2 Energetics 51
2.3.2.1.3 Sterics 52
2.3.2.2 Phenomena based on Sizing Agent Mobility 53
2.3.2.2.1 Sizing Agent Orientation 54
2.3.2.2.2 Intra-Molecular Orientation 55
2.3.2.2.3 Sizing Agent Agglomeration 55
2.3.2.2.4 Fugitive Sizing / Sizing Loss / Size Reversion 56
2.3.2.2.5 Sizing Agent Migration 58
2.3.2.2.6 Sizing Reactivation / Sizing Agent Reorientation 59
2.3.3 Causes for Interactions during ASA Sizing 60
2.3.3.1 Process Parameters 61
2.3.3.1.1 Temperature 61
2.3.3.1.2 pH-Value 62
2.3.3.1.3 Water Hardness 63
2.3.3.2 Fiber Types 64
2.3.3.3 Filler Types 65
2.3.3.4 Cationic Additives 66
2.3.3.5 Anionic Additives 67
2.3.3.6 Surface-Active Additives 68
2.4 Limitations of State-of-the-Art ASA-Sizing Analysis 69
2.5 Optical ASA Localization 71
2.5.1 General Background 71
2.5.2 Confocal Microscopy 72
2.5.2.1 Principle 72
2.5.2.2 Features, Advantage and Applicability for Paper-Component Analysis 74
2.5.3 Dying / Staining 75
3 Discussion of Results 77
3.1 Localization of ASA within the Sheet Structure 77
3.1.1 Choice of Dyes 77
3.1.1.1 Dye Type 78
3.1.1.2 Evaluation of Dye/ASA Mixtures 80
3.1.1.2.1 Maximum Soluble Dye Concentration 80
3.1.1.2.2 Thin Layer Chromatography 81
3.1.1.2.3 FTIR-Spectroscopy 82
3.1.1.3 Evaluation of the D-ASA Emulsion 84
3.1.1.4 Paper Chromatography with D-ASA & F-ASA Emulsions 85
3.1.1.5 Evaluation of the D-ASA Emulsion’s Sizing Efficiency 86
3.1.2 The Localization Method 87
3.1.2.1 The Correlation between ASA Distribution and Agglomeration 88
3.1.2.2 Measurement Settings 89
3.1.2.3 Manual Analysis 90
3.1.2.4 Automated Analysis 92
3.1.2.4.1 Automated Localization / Microscopy Measurement 92
3.1.2.4.2 Automated Analysis / Image-Processing 93
3.1.2.5 Result Interpretation and Example Results 96
3.1.2.6 Reproducibility 97
3.1.2.7 Sample Mapping 98
3.1.3 Approaches to Localization-Method Validation 102
3.1.3.1 Raman Spectroscopy 102
3.1.3.2 Confocal Laser Scanning Fluorescent Microscopy 102
3.1.3.3 Decolorization 103
3.2 Factors Impacting the Sizing Behavior of ASA 104
3.2.1 ASA Type 105
3.2.2 Emulsion Parameters 107
3.2.2.1 Hydrolyzed ASA Content 107
3.2.2.2 ASA/Starch Ratio 109
3.2.2.3 Emulsion Age 110
3.2.3 Stock Parameters 111
3.2.3.1 Long Fiber/Short Fiber Ratio 111
3.2.3.2 Furnish Type 112
3.2.3.3 Degree of Refining 114
3.2.3.4 Filler Type/Content 116
3.2.4 Process Parameters 119
3.2.4.1 Temperature 119
3.2.4.2 pH-Value 120
3.2.4.3 Conductivity 122
3.2.4.4 Water Hardness 123
3.2.4.5 Shear Rate 125
3.2.4.6 Dwell Time 127
3.2.4.7 Dosing Position & Dosing Order 128
3.2.4.8 Drying 130
3.2.4.9 Aging 131
3.3 Factors Impacting the Localization Behavior of ASA 132
3.3.1 Degree of Refining 132
3.3.2 Sheet Forming Conductivity 135
3.3.3 Water Hardness 136
3.3.4 Retention Aid (PAM) 137
3.3.5 Contact Curing 138
3.3.6 Accelerated Aging 139
3.4 Main Optimization Approach 141
3.4.1 Optimization of ASA Sizing Performance Characteristics 142
3.4.2 Emulsion Modification 144
3.4.2.1 Lab Trials / RDA Sheet Forming 146
3.4.2.2 TPM Trials 147
3.4.2.3 Industrial-Scale Trials 149
3.4.2.4 Correlation between Sizing Performance Optimization and Agglomeration Behavior on the Example of PAAE 152
3.5 Holistic Approach to Sizing Performance Explanation 154
4 Experimental Approach 157
4.1 Characterization of Methods, Measurements and Chemicals used for the Optical Localization-Analysis of ASA 157
4.1.1 Characterization of used Chemicals 157
4.1.1.1 Preparation of Dyed-ASA Solutions 157
4.1.1.2 Thin Layer Chromatography 157
4.1.1.3 Fourier Transformed Infrared Spectroscopy 157
4.1.1.4 Emulsification of ASA 158
4.1.1.5 Paper Chromatography 159
4.1.1.6 Particle Size Measurement 159
4.1.2 Optical Analysis of ASA Agglomerates 160
4.1.2.1 Microscopy 160
4.1.2.2 Automated Analysis 163
4.1.2.2.1 Adobe Photoshop 163
4.1.2.2.2 Adobe Illustrator 164
4.1.2.3 Confocal Laser Scanning Fluorescent Microscopy 166
4.2 Characterization of Used Standard Methods and Measurements 166
4.2.1 Stock and Paper Properties 166
4.2.1.1 Stock pH, Conductivity and Temperature Measurement 166
4.2.1.2 Dry Content / Consistency Measurement 167
4.2.1.3 Drainability (Schopper-Riegler) Measurement 167
4.2.1.4 Base Weight Measurement 168
4.2.1.5 Ultrasonic Penetration Measurement 168
4.2.1.6 Contact Angle Measurement 169
4.2.1.1 Cobb Measurement 169
4.2.1.2 Air Permeability Measurements 170
4.2.1.3 Tensile Strength Measurements 170
4.2.2 Preparation of Sample Sheets 171
4.2.2.1 Stock Preparation 171
4.2.2.2 Laboratory Refining (Valley Beater) 171
4.2.2.3 RDA Sheet Forming 171
4.2.2.4 Additive Dosing 173
4.2.2.5 Contact Curing 174
4.2.2.6 Hot Air Curing 174
4.2.2.7 Sample Aging 174
4.2.2.8 Preparation of Hydrolyzed ASA 175
4.2.2.9 Trial Paper Machine 175
4.2.2.10 Industrial-Scale Board Machine 177
4.3 Characterization of used Materials 178
4.3.1 Fibers 178
4.3.1.1 Reference Stock System 178
4.3.1.2 OCC Fibers 179
4.3.1.3 DIP Fibers 179
4.3.2 Fillers 180
4.3.3 Chemical Additives 180
4.3.3.1 ASA 180
4.3.3.2 Starches 181
4.3.3.3 Retention Aids 181
4.3.3.4 Poly Aluminum Compounds 181
4.3.3.5 Wet Strength Resin 181
4.3.4 Characterization of used Additives 182
4.3.4.1 Solids Content 182
4.4 Description of Implemented Advanced Data Analysis- and Visualization Methods 183
4.4.1 Design of Experiments (DOE183
4.4.2 Contour Plots 184
4.4.3 Box-Whisker Graphs 185
5 Conclusion 186
6 Outlook for Further Work 191
7 Bibliography 192
Appendix 207
7.1 Localization Method Reproducibility 207
7.2 DOE - Coefficient Lists 208
7.2.1 Trial 3.3.4 – Impact of Retention Aid (PAM) on Agglomeration Behavior and Sizing Performance 208
7.2.2 Trial 3.3.5 – Impact of Contact Curing on Agglomeration Behavior and Sizing Performance 208
7.2.3 Trial 3.3.6 – Impact of Accelerated Aging on Agglomeration Behavior and Sizing Performance 209
|
442 |
Modelling of Heat Pumps Working with Variable-Speed CompressorsOssorio Santiago, Rubén Josep 06 August 2024 (has links)
Tesis por compendio / [ES] La tecnología de bombas de calor se ha vuelto estratégica en Europa, está extendiéndose rápidamente y se planea que reemplace las calderas de gas en un futuro cercano. Sin embargo, aún enfrenta desafíos, como encontrar refrige-rantes nuevos viables y altamente eficientes, y mejorar aún más el rendimiento del sistema. Para abordar este último problema, han surgido las bombas de calor de velocidad variable que prometen reducir el consumo anual e incremen-tar el confort adaptando la potencia suministrada a las necesidades cambiantes. Esta tecnología se está implementando ya, pero carece de una metodología estandarizada para diseñar y seleccionar sus componentes.
Esta tesis tiene como objetivo establecer pautas de diseño generales para la selección y diseño de componentes de bombas de calor de velocidad variable, y ofrecer información valiosa que se pueda traducir en herramientas para asistir en la simulación, diseño, selección y detección de fallas en estos dispositivos. El contenido del estudio se puede dividir en tres áreas temáticas:
En una primera parte, se estudian los compresores de velocidad variable. El compresor es el primer componente que se selecciona en una bomba de calor, modula la capacidad y es el principal consumidor de energía. Sin embargo, no existen metodologías bien establecidas para modelar su comportamiento. En esta parte, se realizan ensayos de caracterización de compresores de velocidad variable y sus inversores para comprender su comportamiento y proporcionar correlaciones compactas para modelar su rendimiento.
En la segunda parte, se propone una metodología para dimensionar los intercambiadores de calor en bombas de calor de velocidad variable. Nor-malmente, se diseñan para una potencia fija y temperaturas de trabajo constan-tes, sin embargo, en las bombas de velocidad variable, la capacidad y las tempe-raturas de trabajo fluctúan significativamente con el tiempo. En esta parte, se estudia la evolución del rendimiento de los intercambiadores de calor con la capacidad (velocidad del compresor) y se propone una metodología de selec-ción/dimensionamiento que considera la evolución de la capacidad requerida y de las condiciones climáticas externas a lo largo del año.
Por último, se evalúa la circulación del aceite en las bombas de calor de velocidad variable. Gestionar la lubricación en los compresores de velocidad variable es un problema típico ya que, para tener suficiente lubricación a bajas velocidades, el compresor termina bombeando un exceso de aceite a altas velo-cidades. En esta parte se estudia la evolución de las tasas de circulación de acei-te con la velocidad y se analiza teóricamente su efecto en el rendimiento de la bomba de calor. / [CA] La tecnologia de les bombes de calor s'ha tornat estratègica a Europa, s'està estenent ràpidament i es preveu que substituïsca les calderes de gas en un futur pròxim. Tanmateix, encara s'enfronta a desafiaments com trobar refrigerants nous viables i altament eficients, i millorar encara més el rendiment del sistema. Per abordar aquest darrer problema, han sorgit les bombes de calor de velocitat variable que prometen reduir el consum anual i incrementar el confort adaptant la potència subministrada a les necessitats variables. Aquesta tecnologia ja s'es-tà implementant, però manca d'una metodologia estandarditzada per dissenyar i seleccionar els seus components.
Aquesta tesi té com a objectiu establir pautes de disseny generals per a la se-lecció i disseny de components de bombes de calor de velocitat variable, i oferir informació valuosa que es pugui traduir en eines per ajudar en la simulació, disseny, selecció i detecció de fallades d'aquests dispositius. El contingut de l'estudi es pot dividir en tres àrees temàtiques:
En una primera part, s'estudien els compressors de velocitat variable. El compressor és el primer component seleccionat d'una bomba de calor, modula la capacitat i és el principal consumidor d'energia. Tanmateix, no hi ha metodo-logies ben establides per modelar el seu comportament. En aquesta part, es realitzen assajos de caracterització de compressors de velocitat variable i els seus inversors per comprendre el seu comportament i proporcionar correlaci-ons compactes per modelar el seu rendiment.
En la segona part, es proposa una metodologia per dimensionar els inter-canviadors de calor en bombes de calor de velocitat variable. Normalment, es dissenyen per a una potència fixa i temperatures de treball constants, no obs-tant això, en les bombes de velocitat variable, la capacitat i les temperatures de treball fluctuen significativament amb el temps. En aquesta part, s'estudia l'evo-lució del rendiment dels intercanviadors de calor amb la capacitat (velocitat del compressor) i es suggereix una metodologia de selecció/dimensionament que considera l'evolució de les càrregues i de les condicions climàtiques externes al llarg de l'any.
Finalment, s'avalua la circulació de l'oli a les bombes de calor de velocitat variable. Gestionar la lubricació als compressors de velocitat variable és un pro-blema típic, ja que per tenir suficient lubricació a baixes velocitats, el compres-sor acaba bombejant un excés d'oli a altes velocitats. En aquesta part s'estudia l'evolució de les taxes de circulació d'oli amb la velocitat i s'analitza teòricament el seu efecte en el rendiment de la bomba de calor. / [EN] Heat pump technology has become strategic in Europe, it is rapidly spread-ing, and it is planned to replace gas boilers in the near future. However, they still have challenges to solve, such as finding new viable and highly efficient refriger-ants and further increasing their system performance. For this latter issue, vari-able-speed heat pumps arise, which claim to decrease annual consumption and increase comfort by adapting the delivered capacity to the changing loads. This technology is being implemented but lacks a standardized methodology to de-sign and select its components.
This thesis aims to establish comprehensive design guidelines for selecting and designing variable-speed heat pump components and give insights that can translate into valuable information and tools for engineers to assist them in the pump simulation, design, selection and fault detection. The content of the study can be divided into three thematic areas:
In the first part, variable-speed compressors are studied. The compressor is the first selected heat pump component; it modulates the capacity and is the primary energy consumer. However, there are no well-established methodolo-gies to model their behavior. In this part, extensive testing of variable-speed compressors and their inverters was carried out to understand their behavior and to provide compact correlations to model their performance.
The second part proposes a methodology to size heat exchangers for variable-speed heat pumps. Typically, they are designed for a fixed capacity and constant working temperatures. However, the capacity and working tempera-tures fluctuate significantly overtime in variable-speed pumps. In this part, the performance evolution of heat exchangers with capacity is studied, and a meth-odological selection/sizing technique is proposed that considers the evolution of external climatic conditions and loads over the year.
Lastly, the oil circulation in variable-speed heat pumps is assessed. Man-aging lubrication in variable-speed compressors is a typical issue, as a design valid for sufficient lubrication at low compressor speeds will end up pumping excess oil at high speeds. In this final part, the evolution of oil circulation rates with speed is studied, and its effect on heat pump performance is theoretically analyzed. / I am indebted to the Spanish and European governments for their financial
support with the grant PRE2018-083535, which made this research possible.
Their commitment to academic excellence and research advancement has been
crucial in successfully completing this thesis. / Ossorio Santiago, RJ. (2024). Modelling of Heat Pumps Working with Variable-Speed Compressors [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/203104 / Compendio
|
443 |
Development of High-throughput Membrane Filtration Techniques for Biological and Environmental Applications / Development of High-throughput Membrane Filtration TechniquesKazemi, Amir Sadegh 11 1900 (has links)
Membrane filtration processes are widely utilized across different industrial sectors for biological and environmental separations. Examples of the former are sterile filtration and protein fractionation via microfiltration (MF) and ultrafiltration (UF) while drinking water treatment, tertiary treatment of wastewater, water reuse and desalination via MF, UF, nanofiltration (NF) and reverse-osmosis (RO) are examples of the latter. A common misconception is that the performance of membrane separation is solely dependent on the membrane pore size, whereas a multitude of parameters including solution conditions, solute concentration, presence of specific ions, hydrodynamic conditions, membrane structure and surface properties can significantly influence the separation performance and the membrane’s fouling propensity. The conventional approach for studying filtration performance is to use a single lab- or pilot-scale module and perform numerous experiments in a sequential manner which is both time-consuming and requires large amounts of material. Alternatively, high-throughput (HT) techniques, defined as the miniaturized version of conventional unit operations which allow for multiple experiments to be run in parallel and require a small amount of sample, can be employed. There is a growing interest in the use of HT techniques to speed up the testing and optimization of membrane-based separations. In this work, different HT screening approaches are developed and utilized for the evaluation and optimization of filtration performance using flat-sheet and hollow-fiber (HF) membranes used in biological and environmental separations. The effects of various process factors were evaluated on the separation of different biomolecules by combining a HT filtration method using flat-sheet UF membranes and design-of-experiments methods. Additionally, a novel HT platform was introduced for multi-modal (constant transmembrane pressure vs. constant flux) testing of flat-sheet membranes used in bio-separations. Furthermore, the first-ever HT modules for parallel testing of HF membranes were developed for rapid fouling tests as well as extended filtration evaluation experiments. The usefulness of the modules was demonstrated by evaluating the filtration performance of different foulants under various operating conditions as well as running surface modification experiments. The techniques described herein can be employed for rapid determination of the optimal combination of conditions that result in the best filtration performance for different membrane separation applications and thus eliminate the need to perform numerous conventional lab-scale tests. Overall, more than 250 filtration tests and 350 hydraulic permeability measurements were performed and analyzed using the HT platforms developed in this thesis. / Thesis / Doctor of Philosophy (PhD) / Membrane filtration is widely used as a key separation process in different industries. For example, microfiltration (MF) and ultrafiltration (UF) are used for sterilization and purification of bio-products. Furthermore, MF, UF and reverse-osmosis (RO) are used for drinking water and wastewater treatment. A common misconception is that membrane filtration is a process solely based on the pore size of the membrane whereas numerous factors can significantly affect the performance. Conventionally, a large number of lab- or full-scale experiments are performed to find the optimum operating conditions for each filtration process. High-throughput (HT) techniques are powerful methods to accelerate the pace of process optimization—they allow for multiple experiments to be run in parallel and require smaller amounts of sample. This thesis focuses on the development of different HT techniques that require a minimal amount of sample for parallel testing and optimization of membrane filtration processes with applications in environmental and biological separations. The introduced techniques can reduce the amount of sample used in each test between 10-50 times and accelerate process development and optimization by running parallel tests.
|
Page generated in 0.1152 seconds