• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Edge and interfacial vibration of a thin elasic cylindrical panel

Arulchandran, Victor January 2013 (has links)
Free vibrations of a thin elastic circular cylindrical panel localized near the rectilinear edge, propagating along the edge and decaying in its circumferential direction, are investigated in the framework of the two-dimensional equations in the Kircho↵-Love theory of shells. At first the panel is assumed to be infinite longitudinally and semi-infinite along its length of curvature (of course not realistically possible), followed by the assumption that the panel is then finite along its length of curvature and fixed and free conditions are imposed on the second resulting boundary. Using the comprehensive asymptotic analysis detailed in Kaplunov et al. (1998) “Dynamics of Thin Walled Elastic Bodies”, leading order asymptotic solutions are derived for three types of localized vibration, they are bending, extensional, and super-low frequency. Explicit representation of the exact solutions cannot be obtained due to the degree of complexity of the solving equations and relevant boundary conditions, however, computational methods are used to find exact numerical solutions and graphs. Parameters, particularly panel thickness, wavelength, poisson’s ratio, and circumferential panel length, are varied, and their e↵ects on vibration analyzed. This analysis is further extended to investigate localized vibration on the interface (perfect bond) of two cylindrical panels joined at their respective rectilinear edges, propagating along the interface and decaying in the circumferential direction away from the interface. An earlier, similar, localized vibration problem presented in Kaplunov et al. (1999) “Free Localized Vibrations of a Semi-Infinite Cylindrical Shell” and Kaplunov and Wilde (2002) “Free Interfacial Vibrations in Cylindrical Shells” is replicated for comparison with all cases. The asymptotics are similar, however in this problem the numerics highlight the stronger e↵ect of curvature on the decay of the super-low frequency vibrations, and to some extent on the leading order bending vibration.
2

Using Machine Learning Techniques to Model the Process-Structure-Property Relationship in Additive Manufacturing

Shishavan, Seyyed Hadi Seifi 06 August 2021 (has links)
Additive manufacturing (AM) is a novel fabrication technique capable of producing highly complex parts. Nevertheless, a major challenge is improving the quality of the fabricated parts. While there are several ways of approaching this problem, developing data-driven methods that use AM process signatures to identify these part anomalies can be rapidly applied to improve the overall part quality during the build. The objective of this dissertation is to model multiple processes within the AM to quantify the quality of the parts and reduced the uncertainty due to variation in input process parameters. The objective of first study is to build a new layer-wise process signature model to characterize the thermal-defect relationship. Based on melt pool images, we propose novel layer-wise key process signatures, which are calculated using multilinear principal component analysis (MPCA) and are directly correlated with layer-wise quality of the part. Second study broadens the spectrum of the dissertation to include mechanical properties, where a novel two-phase modeling methodology is proposed for fatigue life prediction based on in-situ monitoring of thermal history. In final study, our objective is to pave the way toward a better understanding of the uncertainty in the process-defect-structures relationship using an inverse robust design exploration method. The method involves two steps. In the first step, mathematical models are developed to characterize and model the forward flow of information in the intended additive manufacturing process. In the second step, inverse robust design exploration is carried out to investigate satisfying design solutions that meet multiple AM goals.

Page generated in 0.1062 seconds