• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 34
  • 34
  • 13
  • 12
  • 9
  • 9
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Evaluating Social Factors in Diabetes Management by Mexican American Ethnicity

Huerta, Serina 12 1900 (has links)
Differences in Mexican American ethnicity, family and friend social support, and importance of diabetes self-management as related to diabetes management in the older adult population were evaluated with the University of Michigan Health and Retirement Study (HRS) 2003 Diabetes Study. Comparisons were made between Mexican Americans with Type II diabetes and similar non-Hispanic Caucasian and African American individuals with Type II diabetes. Neither family/friend social support nor importance of diabetes self-management were significant predictors of HbA1c levels. Results did not support the idea that perception of receiving support from family/friends or placing importance on diabetes self-management covaried with lower HbAlc level (family/friend: beta = -.13, t = -1.47, p = .143; self management: beta = .08, t = .55, p = .584).
32

Electrochemical Biosensors based on Novel Receptors for Diabetes Management

Kumar, Vinay January 2016 (has links) (PDF)
To address the challenge of accurate, low cost and robust biosensors for diabetes management and early detection of diabetes complications, we have developed novel, robust sensing chemistry (or receptors) for electrochemical POC biosensors. The biosensors have been developed for the bio-markers associated with diabetes management such as glycated haemoglobin (HbA1c), glycated albumin, glucose, biomarkers associated with diabetes complications such as microalbuminuria, urine creatinine and albumin-to-creatinine ratio (ACR) and biomarkers associated with anaemia and malnutrition conditions such as haemoglobin and serum albumin. For haemoglobin detection, a new POC bio sensing technique has been developed based on Aza-heterocyclic chemicals. The repeatability and accuracy of the biosensor have been tested on real pathology samples. The glycated form of haemoglobin, called glycated haemoglobin or HbA1c, is the gold standard test in diabetes management as it gives the 90-days average blood glucose value. We demonstrate a simple method for electrochemical detection of HbA1c by combining bosonic affinity principle along with aza-heterocyclic receptors. The technique has been verified on the real clinical patient samples. Albumin is the most abundant protein in the human blood. Human serum albumin (HSA) is either alone or an associative biomarker in several chronic diseases like necrosis, nephrosis, hepatitis, malnutrition, arthritis, immune disorders, cancer, diabetes and in some severe infections. In pathology laboratories, the serum albumin is usually tested on serum samples and not in whole blood samples. Since albumin is not a metalloproteinase, it is very difficult to develop electrochemical POC biosensor. We have developed a novel technique for the electrochemical detection of serum albumin in whole blood samples, by exploiting its binding property with redox active copper salts. The accuracy of technique has been verified on both real human blood plasma as well as whole blood samples. Glycated albumin, which is the glycated form of serum albumin, is emerging as a novel biomarker for diabetes management, as it gives the average blood glucose value of 15-20 days. It is also extremely useful in chronic kidney disease patients and patients with hemoglobinopathies where HbA1c can give the erroneous results. By combining the copper chemistry along with bosonic affinity principle, we present the first ever demonstration of glycated albumin sensing. Instant blood glucose monitoring is an integral part of diabetes management. Most of the glucometers available in the market are based on glucose oxidase enzyme. We have demonstrated a low cost non-enzymatic electrochemical technique for blood glucose detection using alkaline methylene blue chemistry. The accuracy of the technique has been verified on real human blood plasma samples. Glucometer is one of the most easily available POC biosensor and a useful tool for diabetes population. India has second largest diabetes population in the world. To analyse the accuracy of the POC glucometers which are available in Indian market, a comprehensive study was conducted. The results were compared with clinical accuracy guidelines using exhaustive statistical analysis techniques. The shortcomings of the commercial glucometers are elucidated, regarding different international standards. Diabetic nephropathy is one of the major diabetes complications and is the primary cause of chronic kidney disease (CKD). The presence of albumin in urine is a well-established biomarker for the early detection of diabetic nephropathy. We have developed a technique for electrochemical detection of microalbuminuria for point of care applications by exploring the binding property of human albumin with electrochemically active molecules like copper and hemin. Methylene blue mediated sensing technique has also been proposed. Urine Albumin-to creatinine ratio (ACR) is another variant of the microalbumuria test that can be done any time and does not suffer from the dilution factor of urine. Iron binding property of creatinine is exploited to develop creatinine biosensor, thus enabling POC ACR tests.
33

HOPE Platform Digital Toolfor Type 2 Diabetes : Supporting Newly Diagnosed Patients in Self-Care / HOPE Platform digitalt verktyg för typ 2 diabetes : Stöd i egenvården för nydiagnostiserade patienter

Engdahl, Ylva January 2021 (has links)
Type 2 diabetes is a chronic disease whose incidence has increased with more than 200% during the past 20 years. The increasing number of type 2 diabetes patients could result in more patients suffering from lower quality of life and life threatening complications. Furthermore, the growing need of care will increase the load on healthcare. To counteract this effect, digital tools could be used to put more care responsibility on the patient.  The aim of this project was to find and implement the relevant features for a digital type 2 diabetes tool for newly diagnosed patients. The final goal was to encourage self-care, reduce anxiety and thus improve quality of life, while decreasing the risk of complications. The research process of this project consisted of five phases: literature study (to find relevant features and their clinical evidence), interviews (to find the desires of patients and practitioners), data analysis (to prioritise features), development of the features and evaluation of the tool.  The results showed that important features were documentation of blood glucose measurements, patient education, data transfer, communication and care plan overview, but even more importantwas the possibility to individualise the tool for different patients. The evaluation indicated that a clear care plan overview that was easy to understand could help the patient prioritise care activities. Furthermore, patients could be encouraged by reminders, seeing improvements and having continuous communication with healthcare. It was found that for positive clinical outcomes, high usability is essential. To reach patient acceptance the tool must be relevant and easy to use. It must also give valuable output, such as decision support for self-care or new knowledge. To reach practitioner acceptance the tool should be based on evidence based methods and integrate well with existing systems.  Finally it was concluded that the knowledge and technology needed to build a successful tool is already present, they only need to be put together and formulated in a way which is understandable and useful for both patients, caregivers and developers. / Diabetes typ 2 är en kronisk sjukdom vars incidens har ökat med mer än 200% de senaste 20 åren. Det stigande antalet patienter med diabetes typ 2 kan leda till att fler patienter blir lidande av lägre livskvalitet och livshotande komplikationer. Dessutom ökar det stigande vårdbehovet belastningen på vården. För att motverka denna effekt kan digitala verktyg utvecklas så att mer ansvar kan läggas på patienten. Syftet med detta projekt var att hitta och implementera relevanta funktioner för ett digitalt verktyg för nydiagnostiserade patienter med diabetes typ 2. Målet var att uppmuntra egenvård, minska oro och därmed öka livskvaliteten samt minska risken för komplikationer. Projektets forskningsprocess bestod av fem faser: litteraturstudie (finna relevanta funktioner och deras evidens), intervjuer (kartlägga krav från patienter och vårdgivare), dataanalys (prioritera funktioner), utveckling av funktioner i HOPE platform och slutligen utvärdering av verktyget i HOPE platform. Resultaten visade att dokumentation av blodglukosmätningar, patientutbildning, dataöverföring, kommunikation och vårdplansöversikt var viktiga funktioner, men ännu viktigare var möjligheten att individanpassa verktyget för varje patient. Utvärderingen indikerade att en tydlig vårdplansöversikt som är enkel att förstå hjälper patienten att prioritera de viktigaste vårdaktiviteterna. Vidare kan patienter motiveras av påminnelser, att se förbättring och att ha kontinuerlig kontakt med vården. Det konstaterades att hög användbarhet är nödvändig för att uppnå positiva kliniska effekter. För att nå acceptans hos patienterna måste verktyget vara relevant, enkelt att använda och ge något värdefull tillbaka, så som beslutsstöd för egenvård eller ny kunskap. För att nå acceptans hos vårdgivarna bör verktyget baseras på evidensbaserade metoder och vara kompatibelt med nuvarande system. Slutligen drogs slutsatsen att kunskapen och tekniken för att skapa ett lyckat verktyg redan finns, men att kraven måste sammanställas och formuleras på ett sätt som är förståeligt och användbart för både patienter, vårdgivare och utvecklare.
34

Improving Type 1 DiabetesPatients’ Quality of LifeThrough Data Collection / Förbättring av livskvalitet för typ 1-diabetespatienter genom datainsamling

Ilja, Leiko January 2021 (has links)
Type 1 diabetes (T1D) is a complex chronic disease without treatment. When anindividual is diagnosed with T1D they are taught how to monitor blood glucoselevel as well as external insulin administration. While this management strategyhelps prolong the individual’s life, there are other lifestyle factors not consideredthat negatively impact the patients’ life. This thesis aims to investigate the types of data that can be gathered to benefit T1D patients and healthcare specialists by improving life quality. To do so, the work employs a literature review and its qualitative analysis, aninterviewing process and its qualitative analysis as well as overall findings analysiswhere data is interpreted in order to identify areas of interest, common topics andtrends. 43 literature publications, 3 healthcare professionals and 3 T1D patientsparticipated in this study. Results show initial education is limited leaving patients to initiate their ownresearch which could be a cause for stress. Technological integration does not seemchallenging provided the right training of more complex solutions. Education asa means to reduce stress seems effective both for patients but also for their socialnetworks. Finally, there are currently useful data markers not being used that couldprovide a wider range of information to healthcare specialists aiding in better patientcare and improved T1D patients’ Quality of Life (QOL). To conclude, T1D is a complex chronic disease that requires both clinical andnon-clinical interventions. It is not sufficient to only address its clinical implicationsbut is important to investigate factors that impact the lifestyle and quality of life. Byextracting proper data markers, collecting and analyzing them, it is believed thattechnology can assist healthcare and ultimately improve T1D patient’s quality oflife. / Diabetes typ 1 är en komplex kronisk sjukdom som inte har en behandling. När enindivid blir diagnostiserad med Diabetes typ 1 lär dem att mäta blodsocker nivåernasamt externa insulin administering. Medan denna strategi hjälps förlänga individensliv, finns där andra livsstilsfaktorer som inte är övervägd. Denna avhandling syfta mot att kunna undersöka datatyper som kan insamlas tillfördel för Diabetes typ 1 patienter och värdpersonal genom att förbättra livskvalitet. För att kunna utföra detta genomfördes en litteratursammanställning med en kvalitativ analys, intervjuer med en kvalitativ analys samt ett övergripande rön där datantolkas för att kunna identifiera områden som kan vara intressanta, allmänna temanoch trender. 43 litteratur publikationer, 3 vårdpersonal och 3 diabetes typ 1 patienterdeltog i undersökningen. Resultatet visar inledande utbildning är begränsad vilket leder till att patienterinitiera egen fördjupning. Detta kan bidra till stressnivåerna. Teknologisk integrering verka inte vara en utmaning för patienter om dem få rätt utbildning för komplexa lösningar. Utbildning som metod för att bekämpa och minska stressnivåernaverka effektivt både för patienterna och vårdpersonal men även för deras sociala nätverk. Slutligen, finns där användbara data markörer som inte används men kan förse bredare information till vårdpersonal vilket kan förbättra vården samt patientenslivskvalitet. Slutligen är diabetes typ 1 en komplex sjukdom som kräver både klinisk menäven icke-kliniska ingripande. Det är inte tillräcklig att enbart ta itu med dem kliniska ingripande men det är även viktigt att undersöka faktorer som påverkar livsstiloch livskvalitet. Genom att excerpera lämplig data markörer samt samla och analysera dem, är det tänkt att teknologi kan assistera vårdpersonal och till slut förbättralivskvaliteten av diabetes typ 1 patienter

Page generated in 0.1022 seconds