1 |
Synthese und Reaktivität von Diboran(4)- und Diboran(4)-Addukt-Verbindungen / Synthesis and reactivity of diborane(4)- and diborane(4)-adduct-compoundsTrumpp, Alexandra January 2016 (has links) (PDF)
In der vorliegenden Arbeit wurde zum einen das Koordinationsverhalten von Lewis-Basen an die Lewis-aciden Borzentren der symmetrisch konfigurierten 1,2-Dihalogendiborane(4) des Typs B2R2X2 (R = NMe2, Mes, Dur, tBu; X = Cl, Br, I) und des unsymmetrisch 1,1 substituierten Diborans(4) F2BB(Mes)2, sowie die Eigenschaften und die Reaktivität der erhaltenen sp2–sp3 Diboran(4)-Verbindungen untersucht. Zum anderem wurde die Fähigkeit des 1,1-substituierten Diborans(4) F2BB(Mes)2 zur oxidativen Addition der B–F- bzw. B–B-Bindung an Bisphosphan-Platin(0)-Komplexe untersucht. / The present work focuses on two different reactivities of diboranes(4):
a)the coordination behaviour of Lewis bases to the Lewis-acidic boron centres of symmetrical 1,2-dihalodiboranes(4) of the type B2R2X2 (R = NMe2, Mes, Dur, tBu; X = Cl, Br, I) and the unsymmetrical 1,1-dimesityl-2,2-difluorodiborane(4) F2BB(Mes)2, furthermore the properties and reactivity of the prepared sp2–sp3 diboranes(4) were investigated, and
b)the oxidative addition of 1,1-dimesityl-2,2-difluorodiborane(4) towards low-valent bis(phosphine)platinum precursors.
|
2 |
Reaktivitätsstudien zu Diboranen(4) und NHC-stabilisierten µ-Hydridodiboranen(5) / Reactivity studies of diboranes(4) and NHC-stabilised µ-hydrido diboranes(5)Prieschl, Dominic January 2021 (has links) (PDF)
Die vorliegende Arbeit behandelt im ersten Abschnitt die Synthese und Reaktivität neuartiger Diborane(4). Ebenfalls wurde die Reaktivität von Dihalogendiboranen(4) gegenüber Phenylazid untersucht, wobei symmetrische Vertreter unter Beibehalt der B-B-Bindung die fünfgliedrigen B2N3 Heterocyclen 14 und 15 lieferten. Der zweite Abschnitt dieser Arbeit beschäftigt sich mit der unerwarteten Reaktivität der NHC-stabilisierten μ-Hydridodiborane(5) XXIII und XXIV. Der abschließende Teil dieser Arbeit befasst sich mit den ersten Versuchen zur Darstellung eines CAAC-stabilisierten, Diboranyl-substituierten Borylens. / The first part of this thesis focuses on the synthesis and reactivity of novel diboranes(4). Furthermore, the reactivity of dihalodiboranes(4) towards phenyl azide was investigated. Symmetrical derivatives Ia and IIb gave five-membered B2N3 heterocycles 14 and 15 with retention of the B-B bond. The second chapter of this work deals with the unexpected reactivity of NHC-stabilized μ-hydridodiboranes(5) XXIII and XXIV. The final part of this thesis focuses on the first attempts to synthesize a CAAC-stabilised, diboranyl-substituted borylene.
|
3 |
Anionic and Neutral Lewis-Base Adducts of Diboron(4) Compounds / Anionische und Neutrale Lewis-Basen Addukte von Diboran(4)-VerbindungenWürtemberger-Pietsch, Sabrina January 2017 (has links) (PDF)
Anionic Adducts
Sp2-sp3 tetraalkoxy diboron compounds have gained attention due to the development of new, synthetically useful catalytic reactions either with or without transition-metals. Lewis-base adducts of the diboron(4) compounds were suggested as possible intermediates in Cu catalyzed borylation reactions some time ago. However, intermolecular adducts of tetraalkoxy diboron compounds have not been studied yet in great detail. In preliminary studies, we have synthesized a series of anionic sp2-sp3 adducts of B2pin2 with alkoxy-groups (L = [OMe]–, [OtBu]–), a phenoxy-group (L = [4-tBuC6H4O]–) and fluoride (L = [F]–, with [nBu4N]+ as the counter ion) as Lewis-bases.
Neutral Adducts
Since their isolation and characterization, applications of N-heterocyclic carbenes (NHCs) and related molecules, e.g., cyclic alkylaminocarbenes (CAACs) and acyclic diaminocarbenes (aDCs), have grown rapidly. Their use as ligands in homogeneous catalysis and directly in organocatalysis, including recently developed borylation reactions, is now well established. Recently, several examples of ring expansion reactions (RER) involving NHCs were reported to take place at elevated temperatures, involving Be, B, and Si.
Furthermore, preliminary studies in the group of Marder et al. showed the presence of neutral sp2-sp3 diboron compounds with B2pin2 and the NHC Cy2Im. In this work, we focused on the synthesis and characterization of further neutral sp2-sp3 as well as sp3-sp3 diboron adducts with B2cat2 and B2neop2 and different NHCs. Whereas the mono-NHC adduct is stable for several hours at temperatures up to 60 °C, the bis-NHC adducts undergo thermally induced rearrangement to form the ring expanded products compound 26 and 27. B2neop2 is much more reactive than B2cat2 giving ring expanded product 29 at room temperature in quantitative yields, demonstrating that NHC ring expansion and B–B bond cleavage can be very facile processes.
Whereas the mono-NHC adduct is stable for several hours at temperatures up to 60 °C, the bis-NHC adducts undergo thermally induced rearrangement to form the ring expanded products compound 26 and 27. B2neop2 is much more reactive than B2cat2 giving ring expanded product 29 at room temperature in quantitative yields, demonstrating that NHC ring expansion and B–B bond cleavage can be very facile processes. / Im Rahmen der vorliegenden Arbeit wurde die Synthese und das Reaktionsverhalten Lewis-Säuren/Lewis-Basen-Addukte von Diboran(4)-Verbindungen als Lewis-Säuren untersucht. Als Lewis-Basen dienten zum einem das Fluorid-Ion, zum anderen N-Heterozyklische Carbene. Ein Ziel der vorliegenden Arbeit war somit die Synthese und Charakterisierung anionischer sp2-sp3-Diboran-Verbindungen des Typs [B2(OR)4F][NMe4] (OR2 = Pinakol, Catechol und Neopentyl), die auf ihre Eigenschaft als „Boryl-Übertragungsreagenz“ gegenüber Diazoniumsalzen überprüft wurden.
Der zweite Teil der Arbeit untersucht die Reaktion von Diboranen (B2cat2 und B2neop2) mit gesättigten und ungesättigten N-Heterozyklischen Carbenen (NHCs). Die neutralen, einfach- und zweifach-substituierten NHC-Addukte des Typs B2(OR)4•NHC und B2(OR)4•(NHC)2 wurden anschließend auf ihre thermische Stabilität untersucht.
Die Ergebnisse dieser Arbeit zeigen zum einem, dass anionische Addukte des Typs [B2(OR)4F][NMe4] 4, 7 und 9 als „Boryl-Übertragungsreagenzien“ eingesetzt werden können. Ferner lassen sich ausgehend von Diboran(4)-Verbindungen durch die Umsetzung mit N Heterozyklischen Carbenen die einfach- und zweifach-substituierten NHC-Addukte B2(OR)4•NHC und B2(OR)4•(NHC)2 synthetisieren. Diese sind zum Teil instabil gegenüber einer Ringerweiterungsreaktion unter Insertion einer Boryleinheit in die C–N-Bindung des Carbens. Untersuchungen an NHC-Addukten von Boranen BR3 und HB(OR)2 zeigen weiterhin, dass die Addukte Ph3B•NHC gegenüber solchen Ringerweiterungen stabil sind. Die Addukte HB(OR)2•NHC sind je nach eingesetztem Carben und Boran entweder stabil oder reagieren unter B–H-Bindungsaktivierung zur Ringerweiterung des Carbens.
|
4 |
Übergangsmetallkatalysierte Synthese von Diboranen(4) / Transition Metal catalyzed Synthesis of Diboranes(4)Güthlein, Frank January 2012 (has links) (PDF)
Die Diborane(4) Bis(catecholato)diboran und Bis(pinakolato)diboran können durch homogene und heterogene Katalysatoren durch eine Dehydrokupplungsreaktion ausgehend von Catecholboran und Pinakolboran dargestellt werden. Der effizienteste Katalysator für diese Reaktion ist Platin auf Aluminiumoxid, wobei Umsatzzahlen von maximal 11600 und Umsatzfrequenzen von 444 1/h erreicht werden. / The diboranes(4) bis(catecholato)diborane and bis(pinacolato)diborane are synthesized under homogeneous and heterogeneous catalytic conditions starting from catecholborane and pinacolborane via a dehydrocoupling reaction. The most efficient catalyst is platinum on alumina, affording a maximum turnover number of 11600 and a maximum turnover frequency of 444 1/h.
|
5 |
Reaktivität von Diboranen(4) gegenüber metallischen und nicht-metallischen Lewis-Basen / Reactivity of Diboranes(4) towards metal and non-metal Lewis-BasesDamme, Alexander January 2013 (has links) (PDF)
Die Reaktivität von Diboranen(4) (1,2-Dihalogendiboranen(4)) gegenüber von metallischen und nicht-metallischen Lewis-Basen wurde untersucht. Die Ergebnisse zeigen, dass die oxidative Addition einer Bor-Halogen-Bindung an ein Platin(0)-Komplex selektiv verläuft und in trans-Diboran(4)yl-Bisphosphan-Platin-Komplexen resultiert. Bei Verwendung von 1,2-Dihalogen-1,2-diaryldiboranen(4) findet sich in den korrespondierenden trans-Diboran(4)yl-Platin-Komplexen eine dative Bindung des Platin-Zentralatoms zum entfernten zweiten Bor-Atom, welche sowohl in Lösung als auch im Festkörper beobachtet wird. Die erhaltenen trans-Diboran(4)yl-Komplexe wurden auf ihre Reaktivität untersucht, hierbei konnte erstmals durch Reduktion ein Diboren-Platin-Komplex synthetisiert werden. Die Untersuchung der Reaktivität von nicht-metallischen Lewis-Basen ergab eine Reihe von sp2-sp3-Diboranen an die entweder PEt3 oder PMeCy2 koordiniert ist. In Abhängigkeit des sterischen Anspruches finden sich zwei Isomere mit 1,2- und 1,1'-Anordnung der Halogene. Die 1,2-Isomere zeigen hierbei im Festkörper eine Bor-Halogen-Bor-Brücke mit einer dativen Halogen-Bor-Bindung zwischen dem Halogen und dem sp2-Borzentrum. / The reactivity of diboranes(4) (1,2-dihalodiboranes(4)) towards metal and non-metal Lewis-Bases was examined. The results have shown that the oxidative addition of the boron-halide bond to a platinum center results exclusively in the corresponding trans-diboran(4)yl-bisphosphane-platinum complexes. Using 1,2-dihalo-1,2-diaryldiboranes(4) for the oxidative addition to platinum(0) reveals the corresponding trans-diboran(4)yl platinum complexes with a dative platinum boron bond to the remoted boron atom of the diboran(4)yl ligand. This structural motive can be found in solution as well as in the solid state. The reactivity of the obtained trans-diboran(4)yl-platinum complexes were investigated. Here a diborene-platinum complex was synthesized for the first time by reduction chemistry. The investigation of the reactivity of diboranes(4) toward non-metal Lewis-Bases, such as PEt3 or PMeCy2, lead to sequence of sp2–sp3 phosphine adducts of diboranes. Depending on the steric demand of the used phosphanes two isomers were identified and characterized. The isomers distinguish between the 1,2- and 1,1’-substitutions pattern of the halides, which are formed by a 1,2-rearrengment, which is favoured for the bulky PMeCy2. In the solid state the 1,2-isomers are showing a boron-halide-boron bridge and a rare dative boron-halide bonding interaction to the sp2 boron center.
|
6 |
Synthese und Reaktivität der Lewis-Säure-Base-Addukte von Monoboranen und Diboranen(4) / Synthesis and Reactivity of Lewis Acid-Base Adducts of Monoboranes and Diboranes(4)Wagner, Katharina January 2013 (has links) (PDF)
Im Rahmen dieser Arbeit wurden verschiedene Addukte von Lewis-Säuren und Lewis-Basen synthetisiert und hinsichtlich ihrer Reaktivität, vor allem gegenüber verschiedenen Reduktionsmitteln, untersucht. Als Lewis-Säuren wurden Monoborane und Diborane(4) eingesetzt. Aus der Verbindungsklasse der Monoborane wurden die Aryldihalogenborane MesBBr2 und PhBBr2 untersucht, da diese durch ihre zwei Halogene und ihren sterisch anspruchsvollen Arylrest möglicherweise zu niedervalenten Borverbindungen führen. In der Verbindungsklasse der Diborane(4) wurden B2Cl2Mes2, B2Br2Mes2 und B2I2Mes2 für die Synthese von Addukten verwendet. Aus der Umsetzung von ArBBr2 (Ar = Mes und Ph) mit SIMes erhält man die Monoboran-NHC-Addukte MesBBr2•SIMes und PhBBr2•SIMes. Beide Verbindungen sind farblose Feststoffe und zeigen im 11B-NMR-Spektrum ein Signal im erwarteten Bereich bei ca. –5 ppm. Die erhaltenen Signale im 1H-NMR Spektrum lassen sich den entsprechenden Protonen zuordnen und die Integrale stimmen mit der Anzahl der Protonen überein. Beide Verbindungen sind schlecht löslich, daher konnten keine Einkristalle für eine nähere Strukturbestimmung erhalten werden. In der vorliegenden Arbeit konnte gezeigt werden, dass nicht nur Monoborane mit NHCs 1:1-Addukte bilden, auch Diborane(4) können erfolgreich mit Phosphanen umgesetzt werden. Darüber hinaus konnten die Strukturen der beiden Verbindungen B2Cl2Mes2•PMe3 und B2Br2Mes2•PMe3 mit Hilfe einer Einkristallstrukturanalyse aufgeklärt werden. Durch die Koordination von PMe3 an einem Boratom, erhöht sich an diesem die Elektronendichte. Dies erkennt man z. B. in beiden Verbindungen an den längeren B –Halogen-Bindungen im Vergleich zum Edukt B2X2Mes2. Zudem ist das am vierfach-koordinierten Boratom gebundene Halogen in beiden Fällen deutlich zum dreifach-koordinierten Boratom geneigt. Dies kann man aus den erhaltenen Bindungswinkeln schließen. Nicht nur Trimethylphosphan reagiert mit Diboranen(4) zu 1:1-Addukten, auch N-Heterocyclische Carbene konnten erfolgreich mit Diboranen(4) umgesetzt werden. Die beiden Addukte B2Cl2Mes2•IMe und B2Br2Mes2•IMe konnten als farblose Feststoffe isoliert werden und mit Hilfe der 11B-NMR-Spektroskopie charakterisiert werden. Beide zeigen, wie auch alle weiteren dargestellten Diboran(4)-NHC-Addukte, ein breites Signal (87.7 ppm und 76.2 ppm) für das dreifachkoordinierte Boratom und ein Signal (–4 ppm und –3.5 ppm) für das vierfachkoordinierte Boratom. Verwendet man als Carben das deutlich sterisch anspruchsvollere IDipp, erhält man in einer Ausbeute von 41% bei der Umsetzung bei tiefen Temperaturen einen farblosen Feststoff von B2Cl2Mes2•IDipp als Produkt. Die erhaltene Verbindung B2Cl2Mes2•IDipp konnte mittels 1H-, 11B- und 13C-NMR-Spektroskopie und Elementaranalyse charakterisiert werden. Die so erhaltenen Daten konnten jedoch keine endgültige Aussage über die Konnektivität der einzelnen Atome liefern. Die genaue Molekülstruktur konnte mit Hilfe der Röntgenkristallographie aufgeklärt werden. Überraschenderweise handelt es sich bei dem Produkt nicht um das einfache 1:1-Addukt der beiden Edukte. Vielmehr sind nun beide Chloratome an dem Boratom gebunden, welches zusätzlich das NHC trägt. Entsprechend trägt das dreifach-substituierte Boratom beide Mesitylsubstituenten. Somit müssen im Laufe der Reaktion eine B –Cl- und eine B –C-Bindung gebrochen worden, eine 1,2-Arylverschiebung sowie eine 1,2-Halogenverschiebung erfolgt sein. Dies konnte zuvor bei den Diboran(4)-PMe3-Addukten nicht beobachtet werden. Die Verbindung B2Cl2Mes2•IDipp zeigt mit einer B–B-Bindungslänge von 1.758(2)Å einen deutlich längeren Abstand als im Edukt. Die drei Diboran(4)-NHC-Addukte B2Br2Mes2•IMes, B2Cl2Mes2•SIMes und B2Br2Mes2•SIMes konnten erfolgreich dargestellt werden. Alle Verbindungen wurden mit Hilfe von 1H-, 11B- und 13C-NMR-Spektroskopie und Elementaranalyse charakterisiert. Zusätzlich konnten für die beiden Verbindungen B2Cl2Mes2•SIMes und B2Br2Mes2•SIMes Einkristalle erhalten werden und eine Röntgenstrukturanalyse durchgeführt werden. Bei der Reduktion von B2Cl2Mes2•SIMes mit KC8 konnte ein interessantes Produkt erhalten werden, in dem die beiden Halogene nicht mehr vorhanden sind und sich ein Fünfring gebildet hat, der beide Boratome beinhaltet. Wahrscheinlich entsteht bei der Reaktion zu 13 ein „borylenartiger“ Übergangszustand. Bemerkenswert ist außerdem, dass das NHC-stabilisierte Boratom noch ein vermuteter Übergangszustand. Proton trägt. Die Verbindung 13 wurde mittels NMR-Spektroskopie, Elementaranalyse und Röntgenstrukturanalyse vollständig charakterisiert. Bei der Messung eines 11B,1H-HMQC-NMR-Korrelationsspektrums lag die intensivste Kopplung bei der Mischzeit τ mit einer Kopplungskonstante von JBH = 160Hz. Daraus kann man schließen, dass das Bor-gebundene Proton in der Verbindung 13 in Lösung terminal gebunden ist. / In the course of this work a range of Lewis acid-base adducts were prepared and their reactivity, especially towards reducing agents, was investigated. Monoboranes and diboranes(4) were used as Lewis acids. In the role of monoboranes the aryldihalogenboranes MesBBr2 and PhBBr2 were investigated. These compounds are very interesting due to the two halogens and the sterically demanding aryl groups which may allow the stabilization of low-valent boron species. From the reaction of ArBBr2 (Ar = Mes, Ph) with SIMes the monoborane-NHC adducts MesBBr2•SIMes and PhBBr2•SIMes were obtained. Both compounds are colourless solids and show a signal at ca. –5 ppm in the 11B NMR spectrum, which is in the estimated range. The respective signals in the 1H NMR spectrum can be assigned to the corresponding protons and the integrals are in good agreement with the number of protons. The solubility of the two compounds is not good, so it was not possible to grow crystals for a structure determination by X-ray. The obtained monoborane-NHC adducts MesBBr2•SIMes und PhBBr2•SIMes react in the presence of reductants. This is observable by the appearance of new signals in the 11B NMR spectrum and the colour change of the reaction solution. However, the produced compound could neither be isolated nor further characterized. The present work shows that not only monoboranes react with NHCs to build 1:1 adducts, but also that diboranes(4) can react successfully with phosphines. Furthermore, the solid state molecular structures of B2Cl2Mes2•PMe3 (3) and B2Br2Mes2•PMe3 (4) were ascertained by X-ray diffraction. From these analyses, B–B distances of 1.721(3)Å (3) and 1.719(3)Å (4) could be determined, respectively. Due to the coordination of PMe3 to one of the boron atoms, the electron density increases. This is reflected by elongated B –halogen bonds for both compounds compared to the precursors B2X2Mes2. In addition, the halogen which is bound to the fourfold coordinated boron atom in both cases is inclined towards the threefold coordinated boron atom. This circumstance can be deduced from the bonding angles. Not only trimethylphosphine reacts successfully with diboranes(4) to form 1:1 adducts, but also N-heterocyclic carbenes. The two adducts B2Cl2Mes2•IMe and B2Br2Mes2•IMe were isolated as colourless solids and were characterized by 11B NMR spectroscopy. Both compounds show, as do all following diborane(4)-NHC adducts, a broad signal (87.7 ppm and 76.2 ppm for the threefold coordinated boron atom and a signal for the fourfold coordinated boron atom (–4 ppm and –3.5 ppm). Usage of the considerably sterically demanding carbene IDipp in the reaction at low temperatures leads to a colourless solid of B2Cl2Mes2•IDipp in a yield of 41%. The product was characterised by 1H, 11B and 13C NMR spectroscopy and elemental analysis. The data gained from these analyses was insufficient to clarify the final connectivity of the compound. The molecular structure was instead ascertained by X-ray crystallography. To our surprise the product is not just a simple 1:1 adduct of the precursors. Both chlorine atoms are bound to the boron atom that is stabilised by the NHC. Accordingly, both mesityl groups are bound to the threefold coordinated boron atom. Hence, one B –Cl and one B –C bond were cleaved during the reaction and a 1,2-aryl shift and a 1,2-halogen shift have taken place. This had not been observed before in the formation of diborane(4)-PMe3 adducts. The product B2Cl2Mes2•IDipp shows a B –B bond length of 1.758(2)Å which is considerably longer than in the starting material. B2Br2Mes2 IMes, B2Cl2Mes2•SIMes and B2Br2Mes2•SIMes were successfully synthesised. All three compounds were characterised via 1H, 11B and 13C NMR spectroscopy and elemental analysis. By reduction of B2Cl2Mes2•SIMes with KC8 a highly interesting product was obtained. The product does no longer contain any halogen atoms and a five-membered ring including both boron atoms was formed. A “borylene-like“ transition state presumably occurs in the reaction to form 13. It is remarkable that in this compound the boron atom stabilised by the NHC bears also a proton. The compound 13 was completely characterised via NMR spectroscopy, elemental analysis and X-ray diffraction. During the measurement of an 11B 1H HMQC NMR correlation spectrum for the compound 13 the most intense coupling was detected at 160Hz. This results in the conclusion that the boron-bound proton is coordinated terminally in solution.
|
7 |
The Adsorption And Dissociation Of Ash3 And B2h6 Molecules On Stepped Ge(100) SurfaceTurkmenoglu, Mustafa 01 July 2011 (has links) (PDF)
In this work, the doping processes of the SA type stepped Ge (100) surface by arsine (AsH3) and diborane (B2H6) gas flow have been simulated seperately by the possible adsorption and dissociation models. The most stable adsorption and dissociation models of AsH3 and B2H6 on stepped Ge(100) surface have been determined by the local minimum total energy and/or binding energy calculations based on Hartree-Fock Theory. The present calculations have shown that, the step region (both up and down terraces) of the stepped Ge (100) surface has the most attractive sites for the initial adsorption stages of the gas molecules. It has been found that the thermodynamically preferred structures in the dissociation paths of arsine and diborane are the same / AsH3 , BH3 (fragment of diborane), AsH2 and BH2 products prefer to be bounded to a single surface Ge atom, but AsH and BH prefer to be bridged between two adjacent surface Ge atoms. It has been also found that, at the first step of the adsorptions, AsH3 can only dissociate to AsH2, but BH3 can dissociate to both BH2 and BH. This remarkable result has showed that dissociation of BH3 on Ge(100) surface can be easier than AsH3&rsquo / s. According to the optimization calculations, the dissociation path has started with the adsorption of AsH3 (or BH3) on the electron deficient side (buckled down) of the Ge dimer bond and ended with the occupation of the empty Ge sites in the surface layers by As (or B) atom substitutionally. In the present work, the beginning of the n &ndash / (or p-) type doping of the stepped Ge(100) surface has been illustrated by the As (or B) electronic states obtained in the optical energy gap of Ge very close to HOMO (or LUMO) energy edge.
|
8 |
Influence of surface passivation on the photoluminescence from silicon nanocrystalsSalivati, Navneethakrishnan 07 January 2011 (has links)
Although silicon (Si) nanostructures exhibit size dependent light emission, which can be attributed to quantum confinement, the role of surface passivation is not yet fully understood. This understanding is central to the development of nanocrystal-based detectors. This study investigated the growth, surface chemistry, passivation with deuterium (D2), ammonia (ND3) and diborane (B2D6) and the resulting optical properties of Si nanostructures.
Si nanocrystals less than 6 nm in diameter are grown on SiO2 surfaces in an ultra high vacuum chamber using hot-wire chemical vapor deposition and the as grown surfaces are exposed to atomic deuterium. Temperature programmed desorption (TPD) spectra show that that the nanocrystals surfaces are covered by a mix of monodeuteride, dideuteride and trideuteride species. The manner of filling of the deuteride states on nanocrystals differs from that for extended surfaces as the formation of the dideuteride and trideuteride species is facilitated by the curvature of the nanocrystal. No photoluminescence (PL) is observed from the as grown unpassivated nanocrystals. As the deuterium dose is increased, the PL intensity also begins to increase. This can be associated with increasing amounts of mono-, di- and trideuteride species on the nanocrystal surface, which results in better passivation of the dangling bonds and relaxing of the reconstructed surface. At high deuterium doses, the surface structure breaks down and amorphization of the top layer of the nanocrystal takes place. Amorphization reduces the PL intensity. Finally, as the nanocrystal size is varied, the PL peak shifts, which is characteristic of quantum confinement.
The dangling bonds and the reconstructed bonds at the NC surface are also passivated and transformed with D and NDx by using deuterated ammonia (ND3), which is predissociated over a hot tungsten filament prior to adsorption. At low hot wire ND3 doses PL emission is observed at 1000 nm corresponding to reconstructed surface bonds capped by predominantly monodeuteride and Si-ND2 species. As the hot wire ND3 dose is increased, di- and trideuteride species form and intense PL is observed around 800 nm that does not shift with NC size and is associated with defect levels resulting from NDx insertion into the strained Si-Si bonds forming Si2=ND. The PL intensity at 800 nm increases as the ND3 dose is increased and the intensity increase is correlated to increasing concentrations of deuterides. At extremely high ND3 doses PL intensity decreases due to amorphization of the NC surface. In separate experiments, Si NCs were subjected to dissociative (thermal) exposures of ammonia followed by exposures to atomic deuterium. These NCs exhibited size dependent PL and this can be attributed to the prevention of the formation of Si2=ND species.
Finally, deuterium-passivated Si NCs are exposed to BDx radicals formed by dissociating deuterated diborane (B2D6) over a hot tungsten filament and photoluminescence quenching is observed. Temperature programmed desorption spectra reveal the presence of low temperature peaks, which can be attributed to deuterium desorption from surface Si atoms bonded to subsurface boron atoms. The subsurface boron likely enhances nonradiative Auger recombination. / text
|
9 |
Surface Interactions of DiboraneJones, Nathan B. 22 August 2022 (has links)
Diborane (B2H6) is a hydride gas often employed in high-purity industrial surface processes such as chemical vapor deposition or epitaxial layer growth. The use of diborane at industrial scales is complicated by the formation of higher-order borane contaminants in pure diborane gas via a complex series of gas-phase reactions. An advanced, rationally designed sorbent could stabilize diborane through interfacial interactions, dramatically reducing the decomposition rate without permanently trapping the molecule. However, the design of such a sorbent would require a nuanced understanding of diborane's fundamental surface chemistry, about which little is known. In the work presented in this thesis, a novel ultra-high vacuum (UHV) system was designed and employed to characterize the fundamental interactions of diborane with a variety of surfaces. In situ Fourier-transform infrared (FTIR) spectroscopy and temperature-programmed desorption (TPD) experiments were used in conjunction with density-functional theory (DFT) calculations to elucidate binding geometries and interaction mechanisms. On non-functionalized model surfaces such as CaF2 or amorphous carbon, diborane adsorbed only at cryogenic temperatures. Hydroxylated surfaces such as amorphous silica (SiO2) adsorbed significantly more diborane, which remained at slightly higher temperatures. FTIR spectra indicated the presence of hydrogen bonding between diborane and surface hydroxyl groups. DFT calculations revealed that the interaction takes the form of a novel bifurcated dihydrogen bond. In contrast with previous reports, diborane exhibited only weak interactions with the surface hydroxyl groups of silica. DFT calculations further elucidated that the irreversible reaction of diborane with surface hydroxyls is only possible in the presence of a second nucleophile (such as adventitious water). On the metal-organic framework (MOF) UiO-66 NH2, unique chemistry was observed in which diborane reacted with the –NH2 groups of the MOF linkers, yielding stable surface-bound products. DFT calculations determined the reaction mechanism to be dissociative adsorption of diborane, resulting in two amine-bound –BH3 moieties. Importantly, it was found that these fragments persisted at room temperature and could only leave the surface via the reverse reaction. The discovery that diborane can be stored as separate fragments that re-combine to yield the parent molecule has important implications for the development of new diborane sorbents. We hypothesize that surfaces designed with fixed, precisely spaced nucleophiles could enable the reversible storage of diborane. / Doctor of Philosophy / Diborane (B2H6) is a useful but hazardous gas employed in both academia and industry, often in processes that require ultra-high-purity source gases. However, diborane reacts with itself at room temperature, making the contamination of pure diborane very difficult to avoid. This problem could potentially be solved with a specially designed solid material that would sequester diborane without destroying it, but the design of such a material would require a much better understanding of diborane's chemistry with surfaces than currently exists. In this work, we employed ultra-high vacuum (UHV) methods to study the interactions between diborane and a variety of surfaces, with the ultimate goal of determining guiding principles for the design of diborane-stabilizing sorbents. Among the materials we studied were inorganic carbon, silica (SiO2), and a class of advanced microporous materials known as metal-organic frameworks (MOFs). Inorganic materials were found not to interact meaningfully with diborane. A novel hydrogen bond was discovered between diborane and the surface of silica, but the interaction was found to be too weak to provide significant stabilization. Most MOFs behaved similarly to silica. The MOF UiO-66-NH2, however, was found to react with diborane. Through a combination of computer simulations and UHV experiments, the precise nature of the reaction was determined. On the surface of UiO 66 NH2, diborane splits into two surface-bound BH3 molecules, where it is trapped until the reaction reverses. Importantly, it was found that BH3 can only leave the surface by recombining into diborane—effectively storing diborane on the surface to be released later. We hypothesize that this useful chemistry is due to the fixed distance between chemical groups on the MOF surface. This discovery suggests a promising strategy for the design of advanced diborane sorbents.
|
Page generated in 0.076 seconds