• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 96
  • 43
  • 26
  • 24
  • 7
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 281
  • 281
  • 74
  • 61
  • 55
  • 54
  • 33
  • 29
  • 29
  • 28
  • 28
  • 28
  • 26
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Feldetektering för diagnos med differentialgeometriska metoder -en implementering i Mathematica / Fault detection for diagnosis with differential geometric methods -an implementation in Mathematica

Önnegren, Anna January 2004 (has links)
<p>Diagnosis means detection and isolation of faults. A model based diagnosis system is built on a mathematical model of the system. The difficulty when constructing the diagnosis system depends om how the model is formulated. In this report, a method is described that rewrites the model on such a form that the construction of the diagnosis algoritm is easy. The model is transformed by two state space transformations and the result will be a system on state space form where one part of the system becomes easy to supervise. </p><p>The main part of the report describes the procedure to create these transformations, which can be done in seven steps, based on differential geometric methods. </p><p>The aim of this masters thesis was to create an implementation in Mathematica (a computer tool for symbolic formula manipulation) of the creation of the two transformations and the system transformation. The created functions are described and examples of these are given. </p><p>A further aim was to evaluate if Mathematica could be a good support to rewrit a model. This was done by studying examples, and on the basis of the examples, identify difficult and easy steps. </p><p>The program has shown to be a good aid. Two of the seven steps have been identified as difficult and proposals for improvements have been given.</p>
112

Computational Circle Packing: Geometry and Discrete Analytic Function Theory

Orick, Gerald Lee 01 May 2010 (has links)
Geometric Circle Packings are of interest not only for their aesthetic appeal but also their relation to discrete analytic function theory. This thesis presents new computational methods which enable additional practical applications for circle packing geometry along with providing a new discrete analytic interpretation of the classical Schwarzian derivative and traditional univalence criterion of classical analytic function theory. To this end I present a new method of computing the maximal packing and solving the circle packing layout problem for a simplicial 2-complex along with additional geometric variants and applications. This thesis also presents a geometric discrete Schwarzian quantity whose value is associated with the classical Schwarzian derivative. Following Hille, I present a characterization of circle packings as the ratio of two linearly independent solutions of a discrete difference equation taking the discrete Schwarzian as a parameter. This characterization then gives a discrete interpretation of the classical univalence criterion of Nehari in the circle packing setting.
113

On the Local and Global Classification of Generalized Complex Structures

Bailey, Michael 20 August 2012 (has links)
We study a number of local and global classification problems in generalized complex geometry. Generalized complex geometry is a relatively new type of geometry which has applications to string theory and mirror symmetry. Symplectic and complex geometry are special cases. In the first topic, we characterize the local structure of generalized complex manifolds by proving that a generalized complex structure near a complex point arises from a holomorphic Poisson structure. In the proof we use a smoothed Newton’s method along the lines of Nash, Moser and Conn. In the second topic, we consider whether a given regular Poisson structure and transverse complex structure come from a generalized complex structure. We give cohomological criteria, and we find some counterexamples and some unexpected examples, including a compact, regular generalized complex manifold for which nearby symplectic leaves are not symplectomorphic. In the third topic, we consider generalized complex structures with nondegenerate type change; we describe a generalized Calabi-Yau structure induced on the type change locus, and prove a local normal form theorem near this locus. Finally, in the fourth topic, we give a classification of generalized complex principal bundles satisfying a certain transversality condition; in this case, there is a generalized flat connection, and the classification involves a monodromy map to the Courant automorphism group.
114

On the Local and Global Classification of Generalized Complex Structures

Bailey, Michael 20 August 2012 (has links)
We study a number of local and global classification problems in generalized complex geometry. Generalized complex geometry is a relatively new type of geometry which has applications to string theory and mirror symmetry. Symplectic and complex geometry are special cases. In the first topic, we characterize the local structure of generalized complex manifolds by proving that a generalized complex structure near a complex point arises from a holomorphic Poisson structure. In the proof we use a smoothed Newton’s method along the lines of Nash, Moser and Conn. In the second topic, we consider whether a given regular Poisson structure and transverse complex structure come from a generalized complex structure. We give cohomological criteria, and we find some counterexamples and some unexpected examples, including a compact, regular generalized complex manifold for which nearby symplectic leaves are not symplectomorphic. In the third topic, we consider generalized complex structures with nondegenerate type change; we describe a generalized Calabi-Yau structure induced on the type change locus, and prove a local normal form theorem near this locus. Finally, in the fourth topic, we give a classification of generalized complex principal bundles satisfying a certain transversality condition; in this case, there is a generalized flat connection, and the classification involves a monodromy map to the Courant automorphism group.
115

Méthode d'éléments spectraux avec joints pour des géométries axisymétriques

Satouri, Jamil 09 November 2010 (has links) (PDF)
Dans cette thèse on s'est intéressé aux problèmes tridimensionnels de Laplace et de stokes dans des domaines axisymétriques. Ces problèmes sont réduits, sans approximation et par des développements en coefficients de Fourier en une famille dénombrable de problèmes bidimensionnels. Les domaines qu'on a considéré présentent des singularités géométriques et sont décomposés de façons non nécessairement conformes. Les non conformités sur les interfaces entre les sous domaines sont traités par la méthode des joints. La méthode de base de discrétisation est la méthode spectrale. On a montre alors des résultats d'approximation optimaux, proches de ceux trouves lors de l'approximation conformes avec des contraintes de continuités sur les interfaces. Ceci prouve encore une fois l'efficacité de la méthode des joints.
116

Feldetektering för diagnos med differentialgeometriska metoder -en implementering i Mathematica / Fault detection for diagnosis with differential geometric methods -an implementation in Mathematica

Önnegren, Anna January 2004 (has links)
Diagnosis means detection and isolation of faults. A model based diagnosis system is built on a mathematical model of the system. The difficulty when constructing the diagnosis system depends om how the model is formulated. In this report, a method is described that rewrites the model on such a form that the construction of the diagnosis algoritm is easy. The model is transformed by two state space transformations and the result will be a system on state space form where one part of the system becomes easy to supervise. The main part of the report describes the procedure to create these transformations, which can be done in seven steps, based on differential geometric methods. The aim of this masters thesis was to create an implementation in Mathematica (a computer tool for symbolic formula manipulation) of the creation of the two transformations and the system transformation. The created functions are described and examples of these are given. A further aim was to evaluate if Mathematica could be a good support to rewrit a model. This was done by studying examples, and on the basis of the examples, identify difficult and easy steps. The program has shown to be a good aid. Two of the seven steps have been identified as difficult and proposals for improvements have been given.
117

The Graph Cases of the Riemannian Positive Mass and Penrose Inequalities in All Dimensions

Lam, Mau-Kwong George January 2011 (has links)
<p>We consider complete asymptotically flat Riemannian manifolds that are the graphs of smooth functions over $\mathbb R^n$. By recognizing the scalar curvature of such manifolds as a divergence, we express the ADM mass as an integral of the product of the scalar curvature and a nonnegative potential function, thus proving the Riemannian positive mass theorem in this case. If the graph has convex horizons, we also prove the Riemannian Penrose inequality by giving a lower bound to the boundary integrals using the Aleksandrov-Fenchel inequality. We also prove the ZAS inequality for graphs in Minkowski space. Furthermore, we define a new quasi-local mass functional and show that it satisfies certain desirable properties.</p> / Dissertation
118

Hertz Potentials and Differential Geometry

Bouas, Jeffrey David 2011 May 1900 (has links)
I review the construction of Hertz potentials in vector calculus starting from Maxwell's equations. From here, I lay the minimal foundations of differential geometry to construct Hertz potentials for a general (spatially compact) Lorentzian manifold with or without boundary. In this general framework, I discuss "scalar" Hertz potentials as they apply to the vector calculus situation, and I consider their possible generalization, showing which procedures used by previous authors fail to generalize and which succeed, if any. I give specific examples, including the standard at coordinate systems and an example of a non-flat metric, specifically a spherically symmetric black hole. Additionally, I generalize the introduction of gauge terms, and I present techniques for introducing gauge terms of arbitrary order. Finally, I give a treatment of one application of Hertz potentials, namely calculating electromagnetic Casimir interactions for a couple of systems.
119

Tightening and blending subject to set-theoretic constraints

Williams, Jason Daniel 17 May 2012 (has links)
Our work applies techniques for blending and tightening solid shapes represented by sets. We require that the output contain one set and exclude a second set, and then we optimize the boundary separating the two sets. Working within that framework, we present mason, tightening, tight hulls, tight blends, and the medial cover, with details for implementation. Mason uses opening and closing techniques from mathematical morphology to smooth small features. By contrast, tightening uses mean curvature flow to minimize the measure of the boundary separating the opening of the interior of the closed input set from the opening of its complement, guaranteeing a mean curvature bound. The tight hull offers a significant generalization of the convex hull subject to volumetric constraints, introducing developable boundary patches connecting the constraints. Tight blends then use opening to replicate some of the behaviors from tightenings by applying tight hulls. The medial cover provides a means for adjusting the topology of a tight hull or tight blend, and it provides an implementation technique for two-dimensional polygonal inputs. Collectively, we offer applications for boundary estimation, three-dimensional solid design, blending, normal field simplification, and polygonal repair. We consequently establish the value of blending and tightening as tools for solid modeling.
120

G2 geometry and integrable systems

Baraglia, David January 2009 (has links)
We study the Hitchin component in the space of representations of the fundamental group of a Riemann surface into a split real Lie group in the rank 2 case. We prove that such representations are described by a conformal structure and class of Higgs bundle we call cyclic and we show cyclic Higgs bundles correspond to a form of the affine Toda equations. We also relate various real forms of the Toda equations to minimal surfaces in quadrics of arbitrary signature. In the case of the Hitchin component for PSL(3,R) we provide a new proof of the relation to convex RP²-structures and hyperbolic affine spheres. For PSp(4,R) we prove such representations are the monodromy for a special class of projective structure on the unit tangent bundle of the surface. We prove these are isomorphic to the convex-foliated projective structures of Guichard and Wienhard. We elucidate the geometry of generic 2-plane distributions in 5 dimensions, work which traces back to Cartan. Nurowski showed that there is an associated signature (2,3) conformal structure. We clarify this as a relationship between a parabolic geometry associated to the split real form of G₂ and a conformal geometry with holonomy in G₂. Moreover in terms of the conformal geometry we prove this distribution is the bundle of maximal isotropics corresponding to the annihilator of a spinor satisfying the twistor-spinor equation. The moduli space of deformations of a compact coassociative submanifold L in a G₂ manifold is shown to have a natural local embedding as a submanifold of H2(L,R). We consider G2-manifolds with a T^4-action of isomorphisms such that the orbits are coassociative tori and prove a local equivalence to minimal 3-manifolds in R^{3,3} = H²(T⁴,R) with positive induced metric. By studying minimal surfaces in quadrics we show how to construct minimal 3-manifold cones in R^{3,3} and hence G₂-metrics from equations that are a set of affine Toda equations. The relation to semi-flat special Lagrangian fibrations and the Monge-Ampere equation is explained.

Page generated in 0.251 seconds