• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multicomponent Reactions in 11C/12C Chemistry : – Targeting the Angiotensin II Subtype 2 Receptor

Stevens, Marc January 2016 (has links)
Section 1 of this thesis contains an introduction to method development in organic synthesis, multicomponent reactions, sulfonyl azides, tracer development in 11C chemistry and the biological target. Section 2 describes the use of sulfonyl azides in carbonylative chemistry. Paper I covers development of a diazotransfer protocol. In total, 30 arylsulfonyl azides were synthesised from primary sulfonamides (20–90% yield). 15N mechanistic studies were carried out and in Paper II, the products were converted into sulfonamides, sulfonylureas and sulfonyl carbamates (19–90% yield). For ureas and carbamates, a two-chamber protocol was employed to release CO from Mo(CO)6. 15N mechanistic studies showed that the sulfonamides were formed by direct displacement of azide. Section 3 covers imaging and biological studies of the angiotensin II receptor subtype 2 (AT2R). In Paper III, 12 11C-sulfonyl carbamates were prepared in isolated radiochemical yields of 3–51% via Rh(I)-mediated carbonylation. The first non-peptide AT2R agonist, C21, was labelled (isolated RCY 24±10%, SA 34–51 GBq/µmol). C21 was tested in a prostate cancer assay, followed by biodistribution and small-animal PET studies. In Paper IV, a 11C-labelled AT2R ligand prepared via Pd(0)-mediated aminocarbonylation was used for autoradiography, biodistribution and small-animal PET studies.   Section 4 describes the development of a multicomponent method for the synthesis of 3,4-dihydroquinazolinones (Paper V). 31 3,4-dihydroquinazolinones were synthesized via a cyclic iminium ion.
2

Synthesis of Insulin-Regulated Aminopeptidase (IRAP) inhibitors

Agalo, Faith January 2015 (has links)
The need for alternative cognitive enhancers has risen due to the fact that clinical trial results of the drugs currently approved for treating these disorders have not been satisfactory. IRAP has become a possible drug target for treating cognitive impairment brought about by Alzheimer’s disease, head trauma or cerebral ischemia, among others. This came after the revelation that Angiotensin IV enhances memory and learning. Angiotensin IV, the endogenous ligand of IRAP has been structurally modified with the aim of producing potent IRAP inhibitors. However, the peptidic nature of these inhibitors restricts their use; they are not likely to cross the blood brain barrier. Other strategies for generating IRAP inhibitors have been through structure-based design and receptor based virtual screening. These drug-like molecules have exhibited positive results in animal studies. IRAP inhibitors have been identified via a HTS of 10500 low-molecular weight compounds to give the hit based on a spirooxindole dihydroquinazolinone scaffold, with an IC50 value of 1.5 µM. In this project, some analogues to this hit compound have successfully been synthesized using a known method, whereas others have been synthesized after additional method development. The application of the developed method was found to be limited, because poor yield was obtained when a compound with an electron withdrawing substituent on the aniline was synthesized. As a result of this, modification of this method may be required or new methods may have to be developed to synthesize these types of analogues. Inhibition capability of 5 new spirooxindole dihydroquinazolinones was tested through a biochemical assay. Compound 6e emerged as the most potent inhibitor in the series, with an IC50 value of 0.2 µM. This compound will now serve as a lead compound and should be used as a starting point for future optimization in order to generate more potent IRAP inhibitors.

Page generated in 0.0775 seconds