• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Effect of Indole-3-Carbinol and 3,3'-Diindolylmethane on Fatty Acid Synthase and Sp1 in Breast Cancer Cells

Saati, George 15 February 2010 (has links)
Fatty acid synthase (FAS), an enzyme that is over-expressed in many cancers, is necessary for cancer cell proliferation. Previously, we have shown that FAS in cancer cells is regulated at least in part, by Sp1. Indole-3-carbinol (I3C) and its acid condensation product, 3,3’-diindolylmethane (DIM) modulate various transcription factors involved in regulating cellular proliferation and apoptosis. The objective of this study was to determine whether reductions in breast cancer cell proliferation caused by I3C and/or DIM occur as a result of reductions in FAS. DIM and, in some cases, I3C reduced FAS expression in three breast cancer cell lines. However, addition of palmitate or oleate to DIM-treated MCF-7 cells did not restore proliferation. DIM-associated reduction in proliferation of MCF-7 cells also results in a reduction of Sp1 expression, and down-regulation of FAS occurs after inhibition of proliferation. Thus, the anti-proliferative effect of I3C and DIM may be due to their effect on down-regulating Sp1, which in turn could modify several Sp1-associated genes, including FAS.
2

The Effect of Indole-3-Carbinol and 3,3'-Diindolylmethane on Fatty Acid Synthase and Sp1 in Breast Cancer Cells

Saati, George 15 February 2010 (has links)
Fatty acid synthase (FAS), an enzyme that is over-expressed in many cancers, is necessary for cancer cell proliferation. Previously, we have shown that FAS in cancer cells is regulated at least in part, by Sp1. Indole-3-carbinol (I3C) and its acid condensation product, 3,3’-diindolylmethane (DIM) modulate various transcription factors involved in regulating cellular proliferation and apoptosis. The objective of this study was to determine whether reductions in breast cancer cell proliferation caused by I3C and/or DIM occur as a result of reductions in FAS. DIM and, in some cases, I3C reduced FAS expression in three breast cancer cell lines. However, addition of palmitate or oleate to DIM-treated MCF-7 cells did not restore proliferation. DIM-associated reduction in proliferation of MCF-7 cells also results in a reduction of Sp1 expression, and down-regulation of FAS occurs after inhibition of proliferation. Thus, the anti-proliferative effect of I3C and DIM may be due to their effect on down-regulating Sp1, which in turn could modify several Sp1-associated genes, including FAS.

Page generated in 0.0518 seconds